Feature-based methods for image matching

- Bag of Visual Words approach
- Feature descriptors
 - SIFT descriptor
 - SURF descriptor
- Geometric consistency check
- Vocabulary tree
A Bag of Words

- self-evident
- Liberty
- truths
- happiness
- endowed
- inalienable
- Creator
- pursuit
- Life
Representing a Text as a “Bag of Words”

We hold these truths to be self-evident, that all men are created equal, that they are endowed by their Creator with certain unalienable Rights, that among these are Life, Liberty and the pursuit of Happiness. That to secure these rights, Governments are instituted among Men, deriving their just powers from the consent of the governed, That whenever any Form of Government becomes destructive of these ends, it is the Right of the People to alter or to abolish it, and to institute new Government, laying its foundation on such principles and organizing its powers in such form, as to them shall seem most likely to effect their Safety and Happiness. Prudence, indeed, will dictate that Governments long established should not be changed for light and transient causes; and accordingly all experience hath shewn, that mankind are more disposed to suffer, while evils are sufferable, than to right themselves by abolishing the forms to which they are accustomed. But when a long train of abuses and usurpations, pursuing invariably the same Object evinces a design to reduce them under absolute Despotism, it is their right, it is their duty, to throw off such Government, and to provide new Guards for their future security.
Representing an Image as a “Bag of Visual Words”
Feature descriptors

- Represent local pattern around a keypoint by a vector ("feature descriptor")
- Establish feature correspondences by finding the nearest neighbor in descriptor space
Scale/rotation invariant feature descriptors

- Scale invariance: extract features at scale provided by keypoint detection
- Rotation invariance:
 - Detect dominant orientation
 - Average gradient direction
 - Peak detection in gradient direction histogram
 - Rotate coordinate system to dominant orientation
 - Multiple strong orientation peaks: generate second feature point
SIFT descriptors

- Sample thresholded image gradients at 16x16 locations in scale space (in local coordinate system for rotation and scale invariance)
- For each of 4x4 subregion, generate orientation histogram with 8 directions each; each observation weighted with magnitude of image gradient and a window function
- 128-dimensional feature vector
SURF descriptors

- SURF – Speeded Up Robust Features \cite{Bay2006}
- Compute horizontal and vertical pixel differences, dx, dy (in local coordinate system for rotation and scale invariance, window size $20\sigma \times 20\sigma$, where σ^2 is feature scale)
- Sum dx, dy, and $|dx|$, $|dy|$ over 4x4 subregions (SURF-64) or 3x3 subregions (SURF-36)
- Normalize vector for gain invariance, but distinguish bright blobs and dark blobs based on sign of Laplacian (trace of Hessian matrix)
Computing feature descriptors

Gray

Filters

Blob Response

\[
D_{xx} D_{yy} - (0.9 D_{xy})^2
\]
Computing feature descriptors

Gray

Filters

\[D_{xx} \]

\[D_{xy} \]

\[D_{yy} \]

\[D_{xx} D_{yy} - (0.9D_{xy})^2 \]

Blob Response
Computing feature descriptors

Gray

Filters

D_{xx}

D_{xy}

D_{yy}

$D_{xx}D_{yy} - (0.9D_{xy})^2$

Blob Response
Computing feature descriptors

Filtering:
- D_{xx}
- D_{xy}
- D_{yy}

Blob Response:
$$D_{xx}D_{yy} - (0.9D_{xy})^2$$
Computing feature descriptors

Maxima

Scale

y

x
Computing feature descriptors

Orient Along Dominant Gradient

Gradient Field for Oriented Patch
Computing feature descriptors

SURF Descriptor

\[
\begin{align*}
\sum d_x & \\
\sum d_y & \\
\sum |d_x| & \\
\sum |d_y| & \\
\end{align*}
\]

SIFT Descriptor

\[
\begin{align*}
\sum \sum |d_x| & \\
\sum \sum |d_y| & \\
\sum |d_x| & \\
\sum |d_y| & \\
\end{align*}
\]
“Bag of Visual Words” Matching
Geometric mapping

- Notation:
 - Homogeneous coordinates; reference image \(\mathbf{x} = \begin{pmatrix} x & y & 1 \end{pmatrix}^T \)
 - Inhomogeneous coordinates; target image \(\mathbf{x'} = \begin{pmatrix} x' & y' \end{pmatrix}^T \)

- Translation
 \[\mathbf{x'} = \mathbf{x} + \mathbf{t} \quad \text{or} \quad \mathbf{x'} = \begin{bmatrix} 1 & \mathbf{t} \end{bmatrix} \mathbf{x} \]

- Euclidean transformation (rotation and translation)
 \[\mathbf{x'} = \begin{bmatrix} \cos \theta & -\sin \theta & t_x \\ \sin \theta & \cos \theta & t_y \end{bmatrix} \mathbf{x} \]

- Scaled rotation (similarity transform)
 \[\mathbf{x'} = \begin{bmatrix} s \cdot \cos \theta & -s \cdot \sin \theta & t_x \\ s \cdot \sin \theta & s \cdot \cos \theta & t_y \end{bmatrix} \mathbf{x} \]
Geometric mapping

- Affine transformation
 \[
 x' = \begin{bmatrix}
 a_{00} & a_{01} & a_{02} \\
 a_{10} & a_{11} & a_{12}
 \end{bmatrix} x
 \]

- Motion of planar surface in 3d under orthographic projection
- Parallel lines are preserved

Argyropelecus olfersi. *Sternoptyx diaphana.*
Geometric mapping

- Motion of planar surface in 3d under perspective projection
- Homography

$$
\mathbf{x}' \sim \begin{pmatrix}
 h_{00} & h_{01} & h_{02} \\
 h_{10} & h_{11} & h_{12} \\
 h_{20} & h_{21} & h_{22}
\end{pmatrix} \mathbf{x}
$$

- Inhomogeneous coordinates (after normalization)

$$
x' = \frac{h_{00}x + h_{01}y + h_{02}}{h_{20}x + h_{21}y + h_{22}} \quad y' = \frac{h_{10}x + h_{11}y + h_{12}}{h_{20}x + h_{21}y + h_{22}}
$$

- Straight lines are preserved
RANSAC

- RANdom Sample Consensus [Fischer, Bolles, 1981]
- Randomly select subset of k correspondences
- Compute geometric mapping parameters by linear regression
- Apply geometric mapping to all keypoints
- Count no. of inliers (closer than \sum from the corresponding keypoint, typical $\sum = 1…3$ pixels)
- Repeat process S times, keep geometric mapping with largest no. of inliers
- Required number of trials

$$S = \frac{\log(1 - P)}{\log\left(\frac{1}{1 - q^k}\right)}$$

- Total probability of success
- Probability of valid correspondence

- Use small number of correspondences
RANSAC with Affine Model
RANSAC with Homography
SURF features & affine RANSAC

Pairwise Comparison
Comparing Feature Histograms

- Speed up by comparing histograms of features: pairwise image comparison only for similar histograms
- Histogram intersection

\[\rho = \frac{\sum_{i=1}^{n} \min(Q_i, D_i)}{\sum_{i=1}^{n} D_i} \]

[Swain, Ballard 1991]

- Equivalent to mean absolute difference, if both histograms contain same number of samples
Growing Vocabulary Tree

[Nistér and Stewenius, 2006]
Growing Vocabulary Tree

\[k = 3 \]

[Nistér and Stewenius, 2006]
Querying Vocabulary Tree
Querying: Hard Binning vs. Soft Binning

Hard Binning
[Nistér and Stewenius, CVPR 2006]

Soft Binning
[Philbin et al., CVPR 2008]
Stanford Mobile Visual Search Dataset

CDs

DVDs

Books

Landmarks
Stanford Mobile Visual Search Dataset

- Video Clips
- Cards
- Print
- Paintings
Querying: Hard Binning vs. Soft Binning

- SURF features
- 6-level tree
- 1M leaf nodes
- 3269 query images
- 100 top tree results