Introduction to color science

- Trichromacy
- Spectral matching functions
- CIE XYZ color system
- xy-chromaticity diagram
- Color gamut
- Color temperature
- Color balancing algorithms

Newton's Prism Experiment - 1666

Color: visible range of the electromagnetic spectrum

Radiometry overview

Radiometric Quantities

Quantit	у	Unit			Dimension	Notes			
Name	Symbol ^[nb 1] Name		Symbol		Symbol	10163			
Radiant energy Radiant energy dens Radiant flux Spectral flux Radiant intensity Spectral intensity	Radiance		L _{e,Ω} [nb 5]	watt per steradian per square metre		W∙sr ^{–1} ∙m ^{–2}	М ∙Т ^{–3}	Radiant flux emitted, reflected, transmitted or received by a <i>surface</i> , per unit solid angle per unit projected area. This is a <i>directional</i> quantity. This is sometimes also confusingly called "intensity".	
Radiance Spectral radiance Irradiance Spectral irradiance Radiosity	Spectral radiance		$L_{e,\Omega,v}^{[nb 3]}$ or $L_{e,\Omega,\lambda}^{[nb 4]}$	watt per steradian per square metre per hertz <i>or</i> watt per steradian per square metre, per metre		W ⋅ sr ⁻¹ ⋅ m ⁻² ⋅ Hz ⁻¹ or W ⋅ sr ⁻¹ ⋅ m ⁻³	M · T ^{−2} or M · L ^{−1} · T ^{−3}	Radiance of a <i>surface</i> per unit frequency or wavelength. The latter is commonly measured in $W \cdot sr^{-1} \cdot m$ $^{-2} \cdot nm^{-1}$. This is a <i>directional</i> quantity. This is sometimes also confusingly called "spectral intensity".	
Spectral radiosity Radiant exitance	Irradiance		Ee ^[nb 2] wa		watt per square metre		W/m ²	M · T ^{−3}	Radiant flux <i>received</i> by a <i>surface</i> per unit area. This is sometimes also confusingly called "intensity".
Spectral exitance	or or At [nb 4] wett per square metre per pet		or W/m ³		or MIL-1 T-3 "Spectral emittance" is an old term for this quantity. This is sometimes als		o confusingly called "spectral intensity".		
Radiant exposure	H_{e} joule per square metre		J/m ²		M·T ⁻²	Radiant energy received by a <i>surface</i> per unit area, or equivalently irradiance of a <i>surface</i> integrate irradiation. This is sometimes also called "radiant fluence".			
Spectral exposure	$r_{e,v} = r_{e,v}$ joue per square metre per herz or or $H_{e,\lambda}^{[nb 4]}$ joule per square metre, per met		re J/m ³		or M·L ⁻¹ ·T ⁻²	Radiant exposure of a <i>surface</i> per unit frequency or wavelength. The latter This is sometimes also called "spectral fluence".	er is commonly measured in J · m ^{−2} · nm ^{−1}		

Photometric Quantities

Quantity	Unit		Dimension	Nataa		
Name	Symbol ^[nb 1]	Name	Symbol	Symbol	NULES	
Luminous energy	Q _v ^[nb 2]	lumen second	lm∙s	T · J ^[nb 3]	Units are sometimes called talbots.	
Luminous flux / Luminous power	Φ _v ^[nb 2]	lumen (= cd⋅sr)	Im	၂ [nb 3]	Luminous energy per unit time.	
Luminous intensity	l _v	candela (= lm/sr)	cd	J [nb 3]	Luminous power per unit solid angle.	
Luminance	L _v	candela per square metre	cd/m ²	L ⁻² .J	Luminous power per unit solid angle per unit <i>projected</i> source area. Units are sometimes called <i>nits</i> .	
Illuminance	Ev	$lux (= lm/m^2)$	lx	L ^{−2} ·J	Luminous power incident on a surface.	
Luminous exitance / Luminous emittance	M _v	lux	lx	L ⁻² ·J	Luminous power <i>emitted</i> from a surface.	
Luminous exposure	H _v	lux second	lx∙s	L ⁻² ·T·J		
Luminous energy density	ων	lumen second per cubic metre	lm∙s∙m ⁻³	L ^{–3} ∙T∙J		
Luminous efficacy	η ^[nb 2]	lumen per watt	lm/W	$M^{-1} \cdot L^{-2} \cdot T^3 \cdot J$	Ratio of luminous flux to radiant flux.	
Luminous efficiency / Luminous coefficient	V			1		

Human retina

[Roorda, Williams, 1999]

Pseudo-color image of nasal retina, 1 degree eccentricity, in two male subjects, scale bar 5 micron

Absorption of light in the cones of the human retina

Three-receptor model of color perception

[T. Young, 1802] [J.C. Maxwell, 1890]

- Different spectra can map into the same tristimulus values and hence look identical ("metamers")
- Three numbers suffice to represent any color Grassmann's law

Color matching

- Suppose 3 primary light sources with spectra $P_k(\not)$, k = 1, 2, 3
- Intensity of each light source can be adjusted by factor \mathcal{R}_{k}
- How to choose \mathcal{R}_{k} , k = 1, 2, 3, such that desired tristimulus values ($\langle R, \langle G, \langle B \rangle$) result ?

Color matching is linear!

Additive vs. subtractive color mixing

Color matching experiment

Courtesy B. Wandell, from [Foundations of Vision, 1996]

Spectral matching functions

- Color matching experiment: Monochromatic test light and monochromatic primary lights
- Spectral RGB primaries (scaled, such that R=G=B matches spectrally flat white)
- "Negative intensity": color is added to test color
- Standard human observer: CIE (Commision Internationale de L'Eclairage), 1931.

Luminosity function

- Experiment: Match the brightness of a white reference light and a monochromatic test light of wavelength λ
- Links photometric to radiometric quantities

CIE 1931 XYZ color system

Properties:

All positive spectral matching functions

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} .490 & .310 & .200 \\ .177 & .813 & .011 \\ .000 & .010 & .990 \end{pmatrix} \begin{pmatrix} R_{\lambda} \\ G_{\lambda} \\ B_{\lambda} \end{pmatrix}$$

- Y corresponds to luminance
- Equal energy white: X=Y=Z
- Virtual primaries

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 15

Color gamut and chromaticity

CIE chromaticity diagram

Perceptual non-uniformity of xy chromaticity

Just noticeable chromaticity differences (10X enlarged)

[MacAdam, 1942]

Color gamut

NTSC phosphors

R: x=0.67, y=0.33 G: x=0.21, y=0.71 B: x=0.14, y=0.08

Reference white: x=0.31, y=0.32 Illuminant C

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 19

White at different color temperatures

Digital Image Processing: Bernd Girod, © 2013 Stanford University -- Color 21

Blackbody radiation

Wien's Law 2,900,00

Color balancing

- Effect of different illuminants can be cancelled only in the spectral domain (impractical)
- Color balancing in 3-d color space is practical approximation
- Color constancy in human visual system: gain control in cone space LMS [von Kries, 1902]
- Von Kries hypothesis applied to image acquisition devices (cameras, scanners)

• How to determine k_L , k_M , k_S automatically?

Color balancing (cont.)

Von Kries hypothesis

$$\begin{pmatrix} L' \\ M' \\ S' \end{pmatrix} = \begin{pmatrix} k_L & 0 & 0 \\ 0 & k_M & 0 \\ 0 & 0 & k_S \end{pmatrix} \begin{pmatrix} L \\ M \\ S \end{pmatrix}$$

• If illumination (or a patch of white in the scene) is known, calculate

$$k_L = \frac{L_{desired}}{L_{actual}}; \quad k_M = \frac{M_{desired}}{M_{actual}}; \quad k_S = \frac{S_{desired}}{S_{actual}}$$

Color balancing with unknown illumination

- Gray-world
- Scale-by-max

$$k_{L}\sum_{x,y} L[x,y] = k_{M}\sum_{x,y} M[x,y] = k_{S}\sum_{x,y} S[x,y]$$

$$k_{L} \max_{x,y} L[x,y] = k_{M} \max_{x,y} M[x,y] = k_{S} \max_{x,y} S[x,y]$$

Shades-of-gray [Finlayson, Trezzi, 2004]

$$\int_{L} \left(\sum_{x,y} L^{p} \left[x, y \right] \right)^{\frac{1}{p}} = k_{M} \left(\sum_{x,y} M^{p} \left[x, y \right] \right)^{\frac{1}{p}} = k_{S} \left(\sum_{x,y} S^{p} \left[x, y \right] \right)^{\frac{1}{p}}$$

- » Special cases: gray-world (p = 1), scale-by-max ($p = \infty$)
- » Best performance for $p\approx 6$
- Refinements:

smooth image, exclude saturated color/dark pixels, use spatial derivatives instead ("gray-edge," "max-edge") [van de Weijer, 2007])

Color balancing example

Original Gray-world Scale-by-max Gray-edge Max-edge Shades-of-gray

Color balancing example

Original image courtesy Ciurea and Funt

Illuminant A CIE observer

Color conversion cheat sheet (e.g. for HW2)

 great website for insights, every possible color conversion scheme, and much more: <u>www.brucelindbloom.com</u>

• spectrum to CIE XYZ:
(no illuminant)
• CIE XYZ to CIE XYZ:

$$X = \int_{\lambda} \overline{x}(\lambda) P(\lambda) d\lambda$$

$$Y = \int_{\lambda} \overline{y}(\lambda) P(\lambda) d\lambda$$

$$Y = \int_{\lambda} \overline{z}(\lambda) P(\lambda) d\lambda$$

$$Y = \frac{Y}{X + Y + Z}$$

$$Z = \int_{\lambda} \overline{z}(\lambda) P(\lambda) d\lambda$$

$$Y = Y$$
• CIE XYZ to CIE RGB:

$$\begin{bmatrix} R_{lower} \\ G_{lower} \\ B_{lower} \end{bmatrix} = M^{-1} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$
approximation of CIE gamma:

$$\{R, G, B\} = \{R, G, B\}^{UY}_{lower}$$
• CIE RGB to CIE XYZ:

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = M \begin{bmatrix} R_{lower} \\ G_{lower} \\ B_{lower} \end{bmatrix}$$

$$M = \begin{bmatrix} .490 & .310 & .200 \\ .177 & .813 & .011 \\ .000 & .010 & .990 \end{bmatrix}$$