Scale-space image processing

- Corresponding image features can appear at different scales

- Like shift-invariance, \textit{scale-invariance} of image processing algorithms is often desirable.

- Scale-space representation is useful to process an image in a manner that is both shift-invariant and scale-invariant
Scale-space image processing

- Scale-space theory
- Laplacian of Gaussian (LoG) and Difference of Gaussian (DoG)
- Scale-space edge detection
- Scale-space keypoint detection
 - Harris-Laplacian
 - SIFT detector
 - SURF detector
Scale-space representation of a signal

Parametric family of signals $f^t(x)$ where fine-scale information is successively attenuated

Successive smoothing with a Gaussian filter

Zero-crossings of 2nd derivative $f''''(x)$
Fewer edges at coarser scales
Scale-space representation of images

- Parametric family of images smoothed by Gaussian filter

\[
f'(x, y) = g'(x, y) \ast f(x, y); \quad t \geq 0 \quad \text{with} \quad g'(x, y) = \frac{1}{2\pi t} \exp \left(-\frac{x^2 + y^2}{2t} \right)
\]

\[
F'(\omega_x, \omega_y) = G'(\omega_x, \omega_y)F(\omega_x, \omega_y) \quad \text{with} \quad G'(\omega_x, \omega_y) = \exp \left(-\frac{t}{2}\left(\omega_x^2 + \omega_y^2\right)\right)
\]

- Shift-invariance

\[
f'(x - \Delta x, y - \Delta y) = g'(x, y) \ast f(x - \Delta x, y - \Delta y)
\]

- Rotation-invariance

\[
f'(x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta) = g'(x, y) \ast f(x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta)
\]
Separability

\[
g'(x, y) = \frac{1}{2\pi t} \exp \left(-\frac{x^2 + y^2}{2t} \right) = \frac{1}{\sqrt{2\pi t}} \exp \left(-\frac{x^2}{2t} \right) \cdot \frac{1}{\sqrt{2\pi t}} \exp \left(-\frac{y^2}{2t} \right)
\]

\[
G'(\omega_x, \omega_y) = \exp \left(-\frac{t}{2} (\omega_x^2 + \omega_y^2) \right) = \exp \left(-\frac{t}{2} \omega_x^2 \right) \exp \left(-\frac{t}{2} \omega_y^2 \right)
\]
Scale-space representation of images (cont.)

- Non-creation of local extrema (for \(f(x,y) \) and all of its partial derivatives) since \(g^t(x,y) \geq 0 \) and unimodal.

- Solution to diffusion equation (heat equation)

\[
\frac{\partial}{\partial t} f^t(x,y) = \frac{1}{2} \nabla^2 f^t(x,y)
\]

\[
\frac{\partial}{\partial t} F^t(\omega_x, \omega_y) = \frac{\partial}{\partial t} G^t(\omega_x, \omega_y) F(\omega_x, \omega_y)
\]

\[
= \frac{\partial}{\partial t} \exp\left(-\frac{t}{2}(\omega_x^2 + \omega_y^2)\right) F(\omega_x, \omega_y)
\]

\[
= -\frac{1}{2}(\omega_x^2 + \omega_y^2) \exp\left(-\frac{t}{2}(\omega_x^2 + \omega_y^2)\right) F(\omega_x, \omega_y)
\]

\[
= -\frac{1}{2}(\omega_x^2 + \omega_y^2) F'(\omega_x, \omega_y)
\]
\[\frac{\partial}{\partial t} f^t(x, y) = \frac{1}{2} \nabla^2 f^t(x, y) \]
LoG vs. DoG

Laplacian of Gaussian

\[
\text{LoG}(x,y) = -\frac{1}{\pi t^2} \left(1 - \frac{x^2 + y^2}{2t}\right) e^{-\frac{x^2+y^2}{2t}}
\]

Difference of Gaussians

\[
\text{DoG}(x,y) = \frac{1}{(k-1)t} \left(g^{k-1}(x,y) - g^{t}(x,y)\right)
\]

\[t = \sigma^2 = 1, \quad k = 1.1\]
LoG vs. DoG (cont.)

Laplacian of Gaussian

\[t = \sigma^2 = 1 \]

\[H(\omega_x, \omega_y) = -\left(\omega_x^2 + \omega_y^2 \right) G'(\omega_x, \omega_y) \]

Difference of Gaussians

\[t = \sigma^2 = 1, \ k = 1.1 \]

\[H(\omega_x, \omega_y) = \frac{1}{(k - 1)t} \left[G^{k\omega_x}(\omega_x, \omega_y) - G^t(\omega_x, \omega_y) \right] \]
Scale space: Laplacian images

\[f'(x, y) \]

\[t \cdot \nabla^2 f'(x, y) \]

\(t = 1 \) \hspace{1cm} \(t = 4 \) \hspace{1cm} \(t = 16 \) \hspace{1cm} \(t = 64 \)
Scale space: Binarized Laplacian images

\[f^t(x, y) \]

\[\text{sign}[t \cdot \nabla^2 f^t(x, y)] \]
Scale space: edge detection

Zero crossings of Laplacian images

Low-gradient-magnitude edges removed
Keypoint detection with automatic scale selection

- Scale-space representation provides all scales; which scale is best for keypoint detection?

Harris-Laplacian

1. Detect Harris corners at some initial scale
2. For each Harris corner \(x_h, y_h \) detect characteristic scale

 \[
 t_h = \arg \max_t \left| t \cdot \nabla^2 f_t \left(x_h, y_h \right) \right|
 \]
3. Apply Harris detector in a spatial neighborhood at scale \(t_h \) to refine keypoint location \(x_h, y_h \)
4. Repeat 2. and 3. until convergence
Keypoint detection with automatic scale selection

Harris-Laplacian example (150 strongest peaks)
Keypoint detection with automatic scale selection

Harris-Laplacian example (200 strongest peaks)
SIFT keypoint detection

- SIFT - Scale-Invariant Feature Transform
- Decompose image into DoG scale-space representation
- Detect minima and maxima locally and across scales
- Fit 3-d quadratic function to localize extrema with sub-pixel/sub-scale accuracy [Brown, Lowe, 2002]
- Eliminate edge responses based on Hessian

Gaussian

Difference of Gaussian (DoG)

Scale

Scale (first octave)

Scale (next octave)

\[
\begin{align*}
t &= 16 \\
t &= 8 \sqrt{2} \\
t &= 8 \\
t &= 4 \sqrt{2} \\
t &= 4 \\
t &= 2 \sqrt{2} \\
t &= 2 \\
t &= \sqrt{2} \\
t &= 1
\end{align*}
\]

SIFT scale space pyramid: octave 1
SIFT scale space pyramid: octave 2
SIFT scale space pyramid: octave 3
SIFT scale space pyramid: octave 4
SIFT scale space pyramid: octave 5
SIFT keypoints
SIFT keypoints
Robustness against scaling

[Robustness against scaling graph]

[Robustness against scaling graph]

[Mikolajczyk, Schmid, 2001]
Hessian keypoints in scale space

\[
H'(x, y) = \begin{bmatrix}
\frac{\partial^2}{\partial x^2} f'(x, y) & \frac{\partial^2}{\partial x \partial y} f'(x, y) \\
\frac{\partial^2}{\partial x \partial y} f'(x, y) & \frac{\partial^2}{\partial y^2} f'(x, y)
\end{bmatrix}
\]
SURF keypoint detection

- SURF – Speeded Up Robust Features \([\text{Bay, Tuytelaars, Van Gool, ECCV 2006}]\)
- No subsampling – all resolution levels at full spatial resolution
- Simple approximation of scale space Gaussian derivatives using integral images

\[D'_{yy} \]

\[D'_{xy} \]

- Determinant of Hessian

\[
\det(H') \approx D'_{xx} D'_{yy} - (0.9 D'_{xy})^2
\]

- Non-maximum suppression in 3x3x3 \([x,y,t]\) neighborhood
- Interpolation of maximum of \(\det(H)\) in image space \(x, y\) and scale \(t\)
SURF keypoints
SIFT keypoints
SURF keypoints
SIFT keypoints