EE368/CS232 Final Project

- Individual or group project, plan for about 50-60 hours per person
- Develop, implement and test/demonstrate an image processing algorithm
- Project presentation: Poster session, **December 7, 2016, 4-6:30 p.m.**
- Remote SCPD students can alternatively submit a narrated video presentation
- Submission of written report and source code: **December 9, 2016, 11:59 p.m.**
EE368/CS232 Grading

- Online quizzes: 5%
- Homework problems: 30%
- Midterm: 25%
- Final project: 40%
- No final exam.
Project grade based on
- technical quality, significance, and originality 50%
- written report 25%
- poster/demo 25%

office hours will continue!
EE368/CS232 Project Grading

- Project report – a small conference paper / technical report
 - appropriate format and length
 - abstract
 - introduction
 - related work, bibliography
 - description of your algorithm
 - comparison, analysis, evaluation
 - discussion

- Project presentation / poster

- Source code
Feature-based methods for image matching

- Bag of Visual Words approach
- Feature descriptors
 - SIFT descriptor
 - SURF descriptor
- Geometric consistency check
A Bag of Words

self-evident
Liberty
happiness
endowed
inalienable
Creator
pursuit
Life
Representing a Text as a “Bag of Words”

We hold these truths to be self-evident, that all men are created equal, that they are endowed by their Creator with certain unalienable Rights, that among these are Life, Liberty and the pursuit of Happiness. That to secure these rights, Governments are instituted among Men, deriving their just powers from the consent of the governed, That whenever any Form of Government becomes destructive of these ends, it is the Right of the People to alter or to abolish it, and to institute new Government, laying its foundation on such principles and organizing its powers in such form, as to them shall seem most likely to effect their Safety and Happiness. Prudence, indeed, will dictate that Governments long established should not be changed for light and transient causes; and accordingly all experience hath shewn, that mankind are more disposed to suffer, while evils are sufferable, than to right themselves by abolishing the forms to which they are accustomed. But when a long train of abuses and usurpations, pursuing invariably the same Object evinces a design to reduce them under absolute Despotism, it is their right, it is their duty, to throw off such Government, and to provide new Guards for their future security.
Representing an Image as a “Bag of Visual Words”
Feature descriptors

- Represent local pattern around a keypoint by a vector (“feature descriptor”)
- Establish feature correspondences by finding the nearest neighbor in descriptor space
Scale/rotation invariant feature descriptors

- Scale invariance: extract features at scale provided by keypoint detection
- Rotation invariance:
 - Detect dominant orientation by finding peak in orientation histogram
 - Rotate coordinate system to dominant orientation
 - Multiple strong orientation peaks: generate second feature point
SIFT descriptors

- SIFT - Scale-Invariant Feature Transform \([\text{Lowe}, 1999, 2004]\)
- Sample thresholded image gradients at 16x16 locations in scale space (in local coordinate system for rotation and scale invariance)
- For each of 4x4 subregion, generate orientation histogram with 8 directions each; each observation weighted with magnitude of image gradient
- 128-dimensional feature vector
SURF descriptors

- **SURF** – Speeded Up Robust Features [Bay et al. 2006]
- Compute horizontal and vertical pixel differences, dx, dy (in local coordinate system for rotation and scale invariance, window size $20\sigma \times 20\sigma$, where σ^2 is feature scale)
- Sum dx, dy, and $|dx|$, $|dy|$ over 4x4 subregions (SURF-64) or 3x3 subregions (SURF-36)
Computing feature descriptors

Blob Response

Orient along dominant gradient

SURF Descriptor

Maxima

Oriented Patch

Filtering

Color

Gray

SIFT Descriptor

Computing feature descriptors
“Bag of Visual Words” Matching
Geometric mapping

- Notation:
 - Homogeneous coordinates; reference image $\mathbf{x} = \begin{pmatrix} x & y & 1 \end{pmatrix}^T$
 - Inhomogeneous coordinates; target image $\mathbf{x}' = \begin{pmatrix} x' & y' \end{pmatrix}$

- Translation
 $$\mathbf{x}' = \mathbf{x} + \mathbf{t} \quad \text{or} \quad \mathbf{x}' = \begin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix} \mathbf{x}$$

- Euclidean transformation (rotation and translation)
 $$\mathbf{x}' = \begin{bmatrix} \cos \theta & -\sin \theta & t_x \\ \sin \theta & \cos \theta & t_y \end{bmatrix} \mathbf{x}$$

- Scaled rotation (similarity transform)
 $$\mathbf{x}' = \begin{bmatrix} s \cdot \cos \theta & -s \cdot \sin \theta & t_x \\ s \cdot \sin \theta & s \cdot \cos \theta & t_y \end{bmatrix} \mathbf{x}$$
Geometric mapping

- **Affine transformation**

\[
\begin{bmatrix}
\alpha_{00} & \alpha_{01} & \alpha_{02} \\
\alpha_{10} & \alpha_{11} & \alpha_{12}
\end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}
\]

- **Motion of planar surface in 3d under orthographic projection**
- **Parallel lines are preserved**
Geometric mapping

- Motion of planar surface in 3d under perspective projection
- Homography

\[
\begin{pmatrix}
 h_{00} & h_{01} & h_{02} \\
 h_{10} & h_{11} & h_{12} \\
 h_{20} & h_{21} & h_{22}
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
 1
\end{pmatrix}
\]

- Inhomogeneous coordinates (after normalization)

\[
x' = \frac{h_{00}x + h_{01}y + h_{02}}{h_{20}x + h_{21}y + h_{22}} \quad y' = \frac{h_{10}x + h_{11}y + h_{12}}{h_{20}x + h_{21}y + h_{22}}
\]

- Straight lines are preserved
Which of the following statements are true?

(a) An affine mapping contains a homography as a special case.

(b) A homography maps straight lines into straight lines.

(c) An affine mapping maps parallel lines into parallel lines.

(d) A homography describes the motion of a cube under perspective projection.
RANSAC

- RANdom Sample Consensus [Fischer, Bolles, 1981]
- Randomly select subset of \(k \) correspondences
- Compute geometric mapping parameters by linear regression
- Apply geometric mapping to all keypoints
- Count no. of inliers (closer than \(\varepsilon \) from the corresponding keypoint, typical \(\varepsilon = 1 \ldots 3 \) pixels)
- Repeat process \(S \) times, keep geometric mapping with largest no. of inliers
- Required number of trials

\[
S = \frac{\log(1 - P)}{\log(1 - q^k)}
\]

- Use small number of correspondences

\[
P = 0.99, \quad q = 0.3, \quad k = 3 \quad \rightarrow \quad S = 168 \\
\quad k = 4 \quad \rightarrow \quad S = 566
\]
RANSAC with Affine Model
RANSAC with Homography
SURF features & affine RANSAC