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Abstract 

 

The purpose of this research is to automatically segment 

and read visual code markers.  These markers are found in 

standard 640x480 pixel color images that were acquired 

with standard VGA cell phone cameras.  In this paper, we 

investigate an approach to automatically identify and read 

visual code markers.  The experimental results show that 

the algorithm discussed in this paper successfully segments 

visual code markers and reads all the data correctly.  The 

average time for the segmentation and data parsing of 

twelve test images was 2.12 seconds per image. 

 

1. Introduction 

 

 Visual code markers have a wide range of applications, 

including the automated tasking of applications in cell 

phones via the built-in camera [1].  With the increasing 

number of cell phones on the world stage, and the 

integration of CCD imagers into even the most modest of 

cell phones, the ability to have automated visual code 

marker detection and reading capabilities is a wonderful 

feature enhancement.  While we are not concentrating on 

the applications of our developed algorithm, the 

applications of such routines need not be ignored. 

 The visual code markers that we consider are 2-

dimensional arrays.  The array consists of 11x11 elements.  

Each element is either black or white.  As shown in the 

figure below, we fix the elements in three of the corners to 

be black.  One vertical guide bar (7 elements long) and one 

horizontal guide bar (5 elements long) are also included.  

The immediate neighbors of the corner elements and the 

guide bar elements are fixed to be white.  This leaves us 

with 83 data elements, which can be either black or white 

[2].  Figure 1 shows an example of the visual code marker 

we are trying to detect and read in the following algorithm. 

 Our initial experimental results show that it is, in fact, 

possible to locate multiple visual code markers embedded 

in low resolution, color images, and subsequently process 

the data they contain.  We were successfully able to locate 

visual code markers in 23 test images, which contained 

anywhere from one to five visual code markers. 

 

2. Corner Detection 

 

In order to properly extract the data contained within 

each visual code marker, the four corners of the marker 

must first be identified.  We refer to each of the corners 

based on their corresponding compass directions: 

northwest, northeast, southwest, and southeast.  To 

determine the location of these coordinates, a four-step 

approach was used.  First, the reverse “L” (two fixed guide 

bars) was identified within the image.  Next, the northeast 

and southeast coordinates were labeled.  Using geometric 

and algebraic calculations, the southwest coordinate was 

calculated next.  Four, and finally, the northwest coordinate 

was found.  If at any stage in the process a valid location 

was not identified, the potential marker was discounted as a 

false positive.  Figure 2 shows the image to which the in-

depth breakdown and discussion of our algorithm will be 

applied. 

2.1. “L” Guide Bars for Northeast / Southeast Detection 

 

  The fixed lengths and proportions of the guide bars 

make them a logical choice for initially identifying 

potential visual code markers.  Additionally, the relatively 

 

Figure 1: Visual Code Marker 

Figure 2: Sample image with visual code markers 



 

 Figure 4: Labeled regions of binary visual code marker image 

 Figure 5: Binary image: regions that remain have major-to-

minor axis ratios greater than or equal to 3 

solid-black on solid-white nature of the visual code markers 

makes working with binary images ideal [3-4].  In order to 

convert the color images to binary images, a thresholding 

algorithm needed to be applied.  However, a simple mean 

value threshold could not be used due to potential 

shadowing and other local image intensity characteristics. 

  To make our thresholding algorithm as invariant to 

image intensity as possible, local thresholds were utilized.  

Our local threshold window was 40 by 40 pixels, and was 

applied in a non-overlapping fashion.  The threshold was 

applied to each of the red, green, and blue channels of the 

color-RGB image separately. To achieve the final binary, 

thresholded image, all three channels were combined using 

a logical AND operator.  This created a locally thresholded, 

binary version of the original input image as seen in Fig. 3. 

  Clearly, the “L” shaped guide bars remain after the 

local threshold has been applied.  Unfortunately, there is 

still a great deal of noise in the image.  To eliminate this 

noise, we divided each mass of connected pixels into 

labeled regions as seen in Fig. 4.  We cycled through each 

region and calculated the ratio of its major axis to its minor 

axis.  The major axis and minor axis were calculated using 

an ellipse that had the same second moment as the labeled 

region.  This calculation was performed automatically 

using the built-in MATLAB® functionality [5].   

 Without any knowledge of the camera’s intrinsic 

characteristics, we could not be certain of any perspective 

transformations, nor correct for them.  However, knowing 

that an original visual code marker had vertical guides with 

dimension ratios of 7:1 and horizontal guides with 

dimension ratios of 5:1, we kept the region as a potential 

guide bar if the major-to-minor axis ratio was greater than 

3:1.  This allowed for some leniency when dealing with 

distortions incurred during the local thresholding process, 

as well as with markers in which the object plane and the 

image plane did not coincide – an assumption that was 

made during processing.  Figure 5 shows the potential 

guide bars following this initial noise cancellation step. 

  To further reduce noise, we took advantage of the fact 

that the guide bars were consistently solid black (or in the 

case of Fig. 5, solid white, as they are the regions of 

potential interest).  Since the guide bars are solid, we 

remove from consideration any region that has holes.  If the 

region is not solid, it is no longer a potential guide bar.  

Additionally, due to the guide bars straight-lined nature, the 

area of their convex hulls are roughly equal to the area of 

the guide bar regions.  By eliminating from consideration 

all regions whose convex hull area differs greatly (by more 

than 30%) from the area of the region area in question, we 

are left with Fig. 6 as the locations of potential guide bars. 

  Now that a majority of the noise has been successfully 

removed, and the visual code marker’s guide bars still 

remain, we can proceed with determining which regions are 

guide bars.  To do so, we exploit the relative spatial 

positioning of the guide bars and the fixed corner elements.  

Again by cycling through the remaining binary regions, we 

test to see if there is a binary region that exists a proper 

distance from the end of each guide bar given by (1).   
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Figure 3: Binary version of input image after application of 

a three channel local threshold 



 
Figure 6: Binary image: potential guide bars after removal of 

non-solid and non-convex regions 

 Figure 7: “L” guide bars and northeast fixed element isolation 

for all visual code markers in the input image 

where dx and dy are the distance from the center of a region 

in the x and y directions, M is the major axis of the region, 

m is the minor axis of the region, and  is the orientation of 

the region. 

  This specific calculation aims at locating the 7:1 guide 

bar, for if binary regions exist at distance d in both 

directions from the region of interest (finds both the 5:1 

guide bar and the northeast fixed corner), then there is a 

good chance that the region is part of a visual code marker.  

To isolate the northeast block, we compare the calculated 

guess location (dx,dy) to the binary threshold image in Fig. 

3.  Figure 7 shows the visual code markers’ “L” guide bars 

and the northeast fixed corner element.  At the conclusion 

of this portion of the algorithm, all three markers have been 

identified and, since we know which regions are grouped 

together – linked to the 7:1 guide bar – each marker will 

subsequently be treated individually.  The northeast and 

southeast corner locations are easily determined by the 

center of mass of the northeast fixed element, and the 

equivalent within the 5:1 guide bar. 

 

2.2. Southwest and Northwest Corner Detection 

 

  Once the northeast and southeast corner coordinates 

are successfully determined, the next step is to isolate the 

southwest corner of the visual code marker.  Since we 

already know which regions in Fig. 7 belong together, we 

will work with each potential visual code marker 

separately.  While in this example the only remaining 

regions happen to be visual code markers, this is not 

necessarily the case, and therefore each of the following 

steps must also provide legitimate coordinates for corner 

locations or else the potential marker will be flagged as a 

false positive and ignored. 

  As with isolating the northeast and southeast region 

locations, a distance from the center of the 5:1 region to the 

estimated location of the center of the southwest fixed 

corner element is calculated by (2), 
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where dx and dy are the distance from the center of the 5:1 

region in the x and y directions, M is the major axis of the 

region, and  is the orientation of the region. 

  After the estimated location of the center of mass of 

the southwest fixed element is calculated, we select the 

region closest to that pixel location that is found in the 

original binary, locally threshold image.  We keep the 

region as a positive match if the area of the region has 

approximately the same area as the northeast fixed corner 

element.  Otherwise, we discard the potential visual code 

marker as a false positive. 

  With three corners positively identified, we need only 

to find the remaining northwest corner before data parsing 

can take place.  To do so, we operate under one primary 

assumption: the visual code markers will appear in the 

image as orthogonal projections, not perspective projection.  

Visual code markers with perspective projection can be 

identified if the degree of their projection is not severe.  

This assumption was made after visual inspection of the 

initial twelve test images. 

  With our assumption of orthogonal projections in hand, 

the distance between the northeast and southeast coordinate 

was calculated and applied to the southwest coordinate.  

Similarly, the distance between the southwest and southeast 

coordinate was calculated and applied to the northeast 

coordinate.  The average location of these two results 

yielded our initial estimate for the northwest corner of the 

visual code marker.  Again, we searched within the binary, 

locally thresholded image in Fig. 3 for the region closest to 

the estimated marker coordinates.  If the region’s area was 

similar to (less than twice) the area of the northeast and 

southwest fixed element regions, then we considered the 

region the proper northwest fixed element.  Otherwise, we 

considered the visual code marker a false positive and 

ignored the marker.  Figure 8 shows all three visual code 

marker guiding elements (the guide bars and the fixed 

corner elements).  Once we have these bounding 

conditions, we are ready to proceed with parsing the data 

contained within each visual code marker. 

 



 

Figure 9: Binary visual code marker after local threshold 

 

 

3. Marker Data Parsing 

 

 Once we have identified the 4 corners of a marker in the 

image, we begin our data-parsing algorithm. This 

algorithm’s task is to (1) filter the image to maximize 

readability of the marker, (2) use the locations of the four 

corners of the marker to calculate where we should sample 

the image in order to read each data square on the marker, 

and (3) return a vector of length 83, containing the final 

data read from the marker. 

 

3.1. Filtering Original Image for Data Retrieval 

 

 In order to be able to read the data contained in a 

marker we need to be able to separate the “black” portions 

from the “white” portions. The challenge in doing this 

arises from the fact that although the marker was printed on 

white paper with black ink, the actual pixel values in the 

digital image of this marker can be very far from black and 

white. Many factors—such as ambient light, noise 

introduced by low quality image sensors, blurring, and 

chromatic aberration, etc.—contribute to this problem. So a 

challenge exists in deciding which pixel values should be 

considered “white” and which pixel values should be 

considered “black”. 

 In order to accomplish this we tried four different 

approaches, each with varying degrees of success. Each of 

the four approaches involved first converting the original 

image to grayscale. Since we are not concerned with color 

information in this task, converting to grayscale simplifies 

the calculations, and eliminates superfluous data. The first 

approach was a simple threshold at a hard coded threshold 

value. Although this approach is not adaptive and relies on 

multiple assumptions it is simple and fast. Unfortunately it 

did not work very well because of the issues mentioned in 

the previous paragraph. The second approach was a slight 

improvement on the first: a threshold value was set to the 

mean of the image. This is an improvement on the first 

approach because it adapts somewhat to the overall lighting 

conditions of the image. A mean-thresholding technique 

alleviates some of the problems (with ambient light for 

example); however, it introduces other problems such as 

large areas of black or white in the image skewing the mean 

gray value in one direction. The third approach extracted a 

local mean value for small blocks throughout the image, 

and subsequently thresholded each block with it’s own 

local mean.  We experimented with the block size but it 

was apparent that without knowing the size of the visual 

code makers in the image, we would run into the same 

types of issues we encountered with our second approach. 

In general, the problem is that the amount of black or white 

in the local blocks contributes to the mean value much 

more than any ambient lighting conditions.  

 Our fourth and final approach takes advantage of our 

knowledge of the location of the corners of the marker. If 

we know the value of a typical black spot on the marker 

and a typical white spot on the marker, we can assign a 

threshold value based on that particular marker’s white 

value and black value.  Figure 9 shows a single visual code 

marker after the local threshold has been applied.  

Fortunately we know that the corner element pixels, of 

which we know the locations, all represent black values for 

that particular marker. We also know that if we move 1/10 

of the distance between two adjacent corners we will land 

on a white block by virtue of the marker design as seen in 

Fig. 10.  By taking mean values over four “black” areas, 

Figure 10: Visual code marker with “white” and “black” 
sampling points 

Figure 8: Final guiding elements found in original image 



(a) (b)

Figure 11: (a) Sampling grid (b) visual code marker with 
overlapping sampling grid 

 

and six “white” areas, and averaging those values, we are 

able to approximate a mean value that is specific to each 

visual code marker, as well as a threshold that isn’t affected 

by the amount of black or white values within that marker. 

This method worked very well as it was highly adaptive, 

and was based on very solid assumptions of the marker 

layout. This method does not work if our corner points are 

wrong, but if our corner points are wrong we should have 

already discounted the potential marker as a false positive. 

 

3.2. Reading Data by Sampling 

 

 Once we have a binary image that results from the 

thresholding described above, it is a matter of locating the 

center points of each block in the marker grid and sampling 

at and around each of those points. We decided in the 

beginning that, because in addition to rotation and scaling 

there could be a large range of perspective transformations 

on the markers, it would be unnecessarily difficult to try to 

rectify the image to bring the marker back to an orthogonal 

and upright position.  We knew that if we had the corner 

points of the image we could interpolate between them to 

approximate the center point of each block on the visual 

code marker grid. This approximation can break down at 

extreme perspective distortions, but for our application 

purposes, it is sufficient. 

 The algorithm finds the sampling points by starting at 

the northwest corner and takes steps of one-tenth the 

distance from the northwest to northeast corner.  By then 

moving our starting point to one-tenth of the distance 

between the northwest and southwest corners, and the 

ending point to one-tenth of the distance between the 

northeast and southeast corners, we could again interpolate 

between those to points to read the second row.  This 

process continues across the entire visual code marker until 

we have sampled all 11 rows of the grid. 

 In order to actually retrieve the data contained within 

the markers, two sampling approaches were tried.  The first 

approach was to simply check whether the center point of 

each cell in the grid was a black or white pixel in our binary 

image. The second approach was to sample a circle of 

diameter less than or equal to the step distance of that row 

and taking the majority. We hypothesized that the second 

approach would be more robust, but slower. In reality 

taking into account pixels around the center point not only 

slows down the sampling process but it also introduces data 

that is less reliable than the center point of the block. Our 

results were less accurate when taking into account the set 

of pixels near the center point than they were when relying 

completely on the center point. In the end we decided to 

use the faster, simpler, and more accurate sampling 

approach.  Figure 11(a) the single point grid that represents 

our sampling location, and Fig. 11(b) is the overlap of that 

mask with a specific visual code marker. 

 After the grid has been sampled, we make a vector of 

the 83 visual code marker points in which we are interested 

as outlined in Figs. 1 and 10. 

 

4. Results 

 

  In order to verify our algorithm’s effectiveness in 

segmenting and reading data from images containing visual 

code markers, twenty-three images were tested.  These 

twenty-three images (twelve of which were provided by 

teaching staff) covered a wide spectrum of potential 

scenarios including a varying number of markers, differing 

projections (orthogonal, affine, minor perspective), and 

even cases in which a portion of the marker was not fully 

located within the test image.  Four of these test images are 

displayed in Fig. 12.  

  For each of the twenty-three test images, all visual 

code markers were successfully segmented.  There were 

zero false positives, zero false negatives, and zero repeated 

marker locations.  Only one individual marker’s data was 

not read correctly due to an extreme perspective projection.  

Figure 13 shows the one marker that was successfully 

Figure 12: Four examples of test images that have multiple 

visual code markers at various projections.  Some of the 

markers are not fully encapsulated by the image, and these 
markers were all successfully rejected as false positives 



 

segmented, but not successfully parsed for data due to the 

large perspective projection – a projection that does not 

maintain the parallel relationship between lines.  Red lines 

have been added to the image to emphasize the perspective 

project, as the human brain tends to automatically correct 

for this transformation without our conscious knowledge.   

  The average time for processing the twelve provided 

images was 2.12 seconds per image, and the average time 

for processing the eleven additional test images was just 

under 3 seconds per image. 

 

5. Conclusions 

 

  Our algorithm’s approach to the segmentation and 

parsing of data from visual code markers embedded within 

color images has been shown to work for multiple test 

cases.  Only in larger perspective projection does our fast 

algorithm begin to break down during data parsing.  

Throughout all of our testing, we never returned a false 

positive, false negative, or repeated any visual code 

markers.  This high-speed approach shows that it is 

possible to properly segment and parse information from 

visual code markers with accuracy and precision, while not 

requiring massive computational times. 
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Figure 13: Visual code marker image that properly 

segmented but failed to correctly parse the data due to the 

perspective projection 


