
VISUAL CODE MARKER SEGMENTATION AND DATA EXTRAPOLATION

Bradford Bonney, Evan Millar

Electrical Engineering Department

Stanford University

Stanford, CA 94305

Abstract

The purpose of this research is to automatically segment

and read visual code markers. These markers are found in

standard 640x480 pixel color images that were acquired

with standard VGA cell phone cameras. In this paper, we

investigate an approach to automatically identify and read

visual code markers. The experimental results show that

the algorithm discussed in this paper successfully segments

visual code markers and reads all the data correctly. The

average time for the segmentation and data parsing of

twelve test images was 2.12 seconds per image.

1. Introduction

 Visual code markers have a wide range of applications,

including the automated tasking of applications in cell

phones via the built-in camera [1]. With the increasing

number of cell phones on the world stage, and the

integration of CCD imagers into even the most modest of

cell phones, the ability to have automated visual code

marker detection and reading capabilities is a wonderful

feature enhancement. While we are not concentrating on

the applications of our developed algorithm, the

applications of such routines need not be ignored.

 The visual code markers that we consider are 2-

dimensional arrays. The array consists of 11x11 elements.

Each element is either black or white. As shown in the

figure below, we fix the elements in three of the corners to

be black. One vertical guide bar (7 elements long) and one

horizontal guide bar (5 elements long) are also included.

The immediate neighbors of the corner elements and the

guide bar elements are fixed to be white. This leaves us

with 83 data elements, which can be either black or white

[2]. Figure 1 shows an example of the visual code marker

we are trying to detect and read in the following algorithm.

 Our initial experimental results show that it is, in fact,

possible to locate multiple visual code markers embedded

in low resolution, color images, and subsequently process

the data they contain. We were successfully able to locate

visual code markers in 23 test images, which contained

anywhere from one to five visual code markers.

2. Corner Detection

In order to properly extract the data contained within

each visual code marker, the four corners of the marker

must first be identified. We refer to each of the corners

based on their corresponding compass directions:

northwest, northeast, southwest, and southeast. To

determine the location of these coordinates, a four-step

approach was used. First, the reverse “L” (two fixed guide

bars) was identified within the image. Next, the northeast

and southeast coordinates were labeled. Using geometric

and algebraic calculations, the southwest coordinate was

calculated next. Four, and finally, the northwest coordinate

was found. If at any stage in the process a valid location

was not identified, the potential marker was discounted as a

false positive. Figure 2 shows the image to which the in-

depth breakdown and discussion of our algorithm will be

applied.

2.1. “L” Guide Bars for Northeast / Southeast Detection

 The fixed lengths and proportions of the guide bars

make them a logical choice for initially identifying

potential visual code markers. Additionally, the relatively

Figure 1: Visual Code Marker

Figure 2: Sample image with visual code markers

 Figure 4: Labeled regions of binary visual code marker image

 Figure 5: Binary image: regions that remain have major-to-

minor axis ratios greater than or equal to 3

solid-black on solid-white nature of the visual code markers

makes working with binary images ideal [3-4]. In order to

convert the color images to binary images, a thresholding

algorithm needed to be applied. However, a simple mean

value threshold could not be used due to potential

shadowing and other local image intensity characteristics.

 To make our thresholding algorithm as invariant to

image intensity as possible, local thresholds were utilized.

Our local threshold window was 40 by 40 pixels, and was

applied in a non-overlapping fashion. The threshold was

applied to each of the red, green, and blue channels of the

color-RGB image separately. To achieve the final binary,

thresholded image, all three channels were combined using

a logical AND operator. This created a locally thresholded,

binary version of the original input image as seen in Fig. 3.

 Clearly, the “L” shaped guide bars remain after the

local threshold has been applied. Unfortunately, there is

still a great deal of noise in the image. To eliminate this

noise, we divided each mass of connected pixels into

labeled regions as seen in Fig. 4. We cycled through each

region and calculated the ratio of its major axis to its minor

axis. The major axis and minor axis were calculated using

an ellipse that had the same second moment as the labeled

region. This calculation was performed automatically

using the built-in MATLAB® functionality [5].

 Without any knowledge of the camera’s intrinsic

characteristics, we could not be certain of any perspective

transformations, nor correct for them. However, knowing

that an original visual code marker had vertical guides with

dimension ratios of 7:1 and horizontal guides with

dimension ratios of 5:1, we kept the region as a potential

guide bar if the major-to-minor axis ratio was greater than

3:1. This allowed for some leniency when dealing with

distortions incurred during the local thresholding process,

as well as with markers in which the object plane and the

image plane did not coincide – an assumption that was

made during processing. Figure 5 shows the potential

guide bars following this initial noise cancellation step.

 To further reduce noise, we took advantage of the fact

that the guide bars were consistently solid black (or in the

case of Fig. 5, solid white, as they are the regions of

potential interest). Since the guide bars are solid, we

remove from consideration any region that has holes. If the

region is not solid, it is no longer a potential guide bar.

Additionally, due to the guide bars straight-lined nature, the

area of their convex hulls are roughly equal to the area of

the guide bar regions. By eliminating from consideration

all regions whose convex hull area differs greatly (by more

than 30%) from the area of the region area in question, we

are left with Fig. 6 as the locations of potential guide bars.

 Now that a majority of the noise has been successfully

removed, and the visual code marker’s guide bars still

remain, we can proceed with determining which regions are

guide bars. To do so, we exploit the relative spatial

positioning of the guide bars and the fixed corner elements.

Again by cycling through the remaining binary regions, we

test to see if there is a binary region that exists a proper

distance from the end of each guide bar given by (1).

 dx =
M

2
+ m

 cos() , dy =

M

2
+ m

 sin() (1)

Figure 3: Binary version of input image after application of

a three channel local threshold

Figure 6: Binary image: potential guide bars after removal of

non-solid and non-convex regions

 Figure 7: “L” guide bars and northeast fixed element isolation

for all visual code markers in the input image

where dx and dy are the distance from the center of a region

in the x and y directions, M is the major axis of the region,

m is the minor axis of the region, and is the orientation of

the region.

 This specific calculation aims at locating the 7:1 guide

bar, for if binary regions exist at distance d in both

directions from the region of interest (finds both the 5:1

guide bar and the northeast fixed corner), then there is a

good chance that the region is part of a visual code marker.

To isolate the northeast block, we compare the calculated

guess location (dx,dy) to the binary threshold image in Fig.

3. Figure 7 shows the visual code markers’ “L” guide bars

and the northeast fixed corner element. At the conclusion

of this portion of the algorithm, all three markers have been

identified and, since we know which regions are grouped

together – linked to the 7:1 guide bar – each marker will

subsequently be treated individually. The northeast and

southeast corner locations are easily determined by the

center of mass of the northeast fixed element, and the

equivalent within the 5:1 guide bar.

2.2. Southwest and Northwest Corner Detection

 Once the northeast and southeast corner coordinates

are successfully determined, the next step is to isolate the

southwest corner of the visual code marker. Since we

already know which regions in Fig. 7 belong together, we

will work with each potential visual code marker

separately. While in this example the only remaining

regions happen to be visual code markers, this is not

necessarily the case, and therefore each of the following

steps must also provide legitimate coordinates for corner

locations or else the potential marker will be flagged as a

false positive and ignored.

 As with isolating the northeast and southeast region

locations, a distance from the center of the 5:1 region to the

estimated location of the center of the southwest fixed

corner element is calculated by (2),

 dx = 3
M

2

 cos() , dy = 3

M

2

 sin() , (2)

where dx and dy are the distance from the center of the 5:1

region in the x and y directions, M is the major axis of the

region, and is the orientation of the region.

 After the estimated location of the center of mass of

the southwest fixed element is calculated, we select the

region closest to that pixel location that is found in the

original binary, locally threshold image. We keep the

region as a positive match if the area of the region has

approximately the same area as the northeast fixed corner

element. Otherwise, we discard the potential visual code

marker as a false positive.

 With three corners positively identified, we need only

to find the remaining northwest corner before data parsing

can take place. To do so, we operate under one primary

assumption: the visual code markers will appear in the

image as orthogonal projections, not perspective projection.

Visual code markers with perspective projection can be

identified if the degree of their projection is not severe.

This assumption was made after visual inspection of the

initial twelve test images.

 With our assumption of orthogonal projections in hand,

the distance between the northeast and southeast coordinate

was calculated and applied to the southwest coordinate.

Similarly, the distance between the southwest and southeast

coordinate was calculated and applied to the northeast

coordinate. The average location of these two results

yielded our initial estimate for the northwest corner of the

visual code marker. Again, we searched within the binary,

locally thresholded image in Fig. 3 for the region closest to

the estimated marker coordinates. If the region’s area was

similar to (less than twice) the area of the northeast and

southwest fixed element regions, then we considered the

region the proper northwest fixed element. Otherwise, we

considered the visual code marker a false positive and

ignored the marker. Figure 8 shows all three visual code

marker guiding elements (the guide bars and the fixed

corner elements). Once we have these bounding

conditions, we are ready to proceed with parsing the data

contained within each visual code marker.

Figure 9: Binary visual code marker after local threshold

3. Marker Data Parsing

 Once we have identified the 4 corners of a marker in the

image, we begin our data-parsing algorithm. This

algorithm’s task is to (1) filter the image to maximize

readability of the marker, (2) use the locations of the four

corners of the marker to calculate where we should sample

the image in order to read each data square on the marker,

and (3) return a vector of length 83, containing the final

data read from the marker.

3.1. Filtering Original Image for Data Retrieval

 In order to be able to read the data contained in a

marker we need to be able to separate the “black” portions

from the “white” portions. The challenge in doing this

arises from the fact that although the marker was printed on

white paper with black ink, the actual pixel values in the

digital image of this marker can be very far from black and

white. Many factors—such as ambient light, noise

introduced by low quality image sensors, blurring, and

chromatic aberration, etc.—contribute to this problem. So a

challenge exists in deciding which pixel values should be

considered “white” and which pixel values should be

considered “black”.

 In order to accomplish this we tried four different

approaches, each with varying degrees of success. Each of

the four approaches involved first converting the original

image to grayscale. Since we are not concerned with color

information in this task, converting to grayscale simplifies

the calculations, and eliminates superfluous data. The first

approach was a simple threshold at a hard coded threshold

value. Although this approach is not adaptive and relies on

multiple assumptions it is simple and fast. Unfortunately it

did not work very well because of the issues mentioned in

the previous paragraph. The second approach was a slight

improvement on the first: a threshold value was set to the

mean of the image. This is an improvement on the first

approach because it adapts somewhat to the overall lighting

conditions of the image. A mean-thresholding technique

alleviates some of the problems (with ambient light for

example); however, it introduces other problems such as

large areas of black or white in the image skewing the mean

gray value in one direction. The third approach extracted a

local mean value for small blocks throughout the image,

and subsequently thresholded each block with it’s own

local mean. We experimented with the block size but it

was apparent that without knowing the size of the visual

code makers in the image, we would run into the same

types of issues we encountered with our second approach.

In general, the problem is that the amount of black or white

in the local blocks contributes to the mean value much

more than any ambient lighting conditions.

 Our fourth and final approach takes advantage of our

knowledge of the location of the corners of the marker. If

we know the value of a typical black spot on the marker

and a typical white spot on the marker, we can assign a

threshold value based on that particular marker’s white

value and black value. Figure 9 shows a single visual code

marker after the local threshold has been applied.

Fortunately we know that the corner element pixels, of

which we know the locations, all represent black values for

that particular marker. We also know that if we move 1/10

of the distance between two adjacent corners we will land

on a white block by virtue of the marker design as seen in

Fig. 10. By taking mean values over four “black” areas,

Figure 10: Visual code marker with “white” and “black”
sampling points

Figure 8: Final guiding elements found in original image

(a) (b)

Figure 11: (a) Sampling grid (b) visual code marker with
overlapping sampling grid

and six “white” areas, and averaging those values, we are

able to approximate a mean value that is specific to each

visual code marker, as well as a threshold that isn’t affected

by the amount of black or white values within that marker.

This method worked very well as it was highly adaptive,

and was based on very solid assumptions of the marker

layout. This method does not work if our corner points are

wrong, but if our corner points are wrong we should have

already discounted the potential marker as a false positive.

3.2. Reading Data by Sampling

 Once we have a binary image that results from the

thresholding described above, it is a matter of locating the

center points of each block in the marker grid and sampling

at and around each of those points. We decided in the

beginning that, because in addition to rotation and scaling

there could be a large range of perspective transformations

on the markers, it would be unnecessarily difficult to try to

rectify the image to bring the marker back to an orthogonal

and upright position. We knew that if we had the corner

points of the image we could interpolate between them to

approximate the center point of each block on the visual

code marker grid. This approximation can break down at

extreme perspective distortions, but for our application

purposes, it is sufficient.

 The algorithm finds the sampling points by starting at

the northwest corner and takes steps of one-tenth the

distance from the northwest to northeast corner. By then

moving our starting point to one-tenth of the distance

between the northwest and southwest corners, and the

ending point to one-tenth of the distance between the

northeast and southeast corners, we could again interpolate

between those to points to read the second row. This

process continues across the entire visual code marker until

we have sampled all 11 rows of the grid.

 In order to actually retrieve the data contained within

the markers, two sampling approaches were tried. The first

approach was to simply check whether the center point of

each cell in the grid was a black or white pixel in our binary

image. The second approach was to sample a circle of

diameter less than or equal to the step distance of that row

and taking the majority. We hypothesized that the second

approach would be more robust, but slower. In reality

taking into account pixels around the center point not only

slows down the sampling process but it also introduces data

that is less reliable than the center point of the block. Our

results were less accurate when taking into account the set

of pixels near the center point than they were when relying

completely on the center point. In the end we decided to

use the faster, simpler, and more accurate sampling

approach. Figure 11(a) the single point grid that represents

our sampling location, and Fig. 11(b) is the overlap of that

mask with a specific visual code marker.

 After the grid has been sampled, we make a vector of

the 83 visual code marker points in which we are interested

as outlined in Figs. 1 and 10.

4. Results

 In order to verify our algorithm’s effectiveness in

segmenting and reading data from images containing visual

code markers, twenty-three images were tested. These

twenty-three images (twelve of which were provided by

teaching staff) covered a wide spectrum of potential

scenarios including a varying number of markers, differing

projections (orthogonal, affine, minor perspective), and

even cases in which a portion of the marker was not fully

located within the test image. Four of these test images are

displayed in Fig. 12.

 For each of the twenty-three test images, all visual

code markers were successfully segmented. There were

zero false positives, zero false negatives, and zero repeated

marker locations. Only one individual marker’s data was

not read correctly due to an extreme perspective projection.

Figure 13 shows the one marker that was successfully

Figure 12: Four examples of test images that have multiple

visual code markers at various projections. Some of the

markers are not fully encapsulated by the image, and these
markers were all successfully rejected as false positives

segmented, but not successfully parsed for data due to the

large perspective projection – a projection that does not

maintain the parallel relationship between lines. Red lines

have been added to the image to emphasize the perspective

project, as the human brain tends to automatically correct

for this transformation without our conscious knowledge.

 The average time for processing the twelve provided

images was 2.12 seconds per image, and the average time

for processing the eleven additional test images was just

under 3 seconds per image.

5. Conclusions

 Our algorithm’s approach to the segmentation and

parsing of data from visual code markers embedded within

color images has been shown to work for multiple test

cases. Only in larger perspective projection does our fast

algorithm begin to break down during data parsing.

Throughout all of our testing, we never returned a false

positive, false negative, or repeated any visual code

markers. This high-speed approach shows that it is

possible to properly segment and parse information from

visual code markers with accuracy and precision, while not

requiring massive computational times.

6. References

[1] ETH Zurich, Department of Computer Science, Institute

for Pervasive Computing. Visual Code Recognition for

Camera-Equipped Mobile Phones. 26 May 2006. 31 May

2006. <http://www.vs.inf.ethz.ch/res/proj/visualcodes/>

[2] EE368 Class Project, Spring 2005-2006. Visual Code

Marker Detection. 26 May 2006. 31 May 2006.

<http://www.stanford.edu/class/ee368/project.html>

[3] Gonzalez, Rafael C., Richard E. Woods, and Steven L.

Eddins. Digital Image Processing using MATLAB. Pearson

Prentice Hall. Upper Saddle River, New Jersey: 2004.

[4] Girod, Bernd. “Binary Image Processing.” EE368

Course Lecture, Department of Electrical Engineering.

Stanford University, May 2006.

[5] The MATLAB® function mentioned is the

regionprops(…) function is found in the image processing

toolbox.

Figure 13: Visual code marker image that properly

segmented but failed to correctly parse the data due to the

perspective projection

