> 07 <

Detecting Visual Codes (May 2006)

Paul Reynolds, Bryan Brudevold, and Paul Baumstarck

Abstract—The detection of binary visual codes is an
integral commercial application of computer vision,
facilitating the transmission of digital information from the
physical to the electronic domains. Our detection method
uses repeated elimination of image areas to identify likely
guide bars. Guide bars are used to predict the locations of
the bounding bits, and further calculation yields a refined
estimate of the code’s location and bit values. Final
processing eliminates candidate visual codes that do not fit
the fixed pattern to a high enough degree.

Index Terms—Visual system, visual codes, binary
sequences, pattern recognition.

I. INTRODUCTION

ISUAL codes have been designed to convey binary
Vinformation in a two-dimensional array. They were
designed as an efficient way to store and retrieve
information about the objects on which they are attached.
The visual code is designed for quick and reliable
identification and decoding by computer imaging. In this
paper, we present one such method.

II. ALGORITHM DESIGN

A. Visual Code Detection

Our initial approach to the problem of locating and
reading the visual codes was to select regions that contained
a high number of strong corners. We used Harris corners
with a high threshold then labeled possible visual code
locations as those places where high number of these
corners were clustered together. Fig. 2a shows a test image
where this algorithm worked very well in selecting only
regions that contained a visual code. However, Fig. 2b
shows another test case where the image background also
contained many strong corners, thus making it impossible
for the detector to generate any useful estimate of where
codes might be. We rejected the method because of its poor
performance on this image and other similar images.

At first we sought to correct for this by adding in color
search. We hoped that the high volume of color in images
would help reject corners that were not part of the black-
and-white visual codes. This method proved to be
unreliable because the codes themselves were not perfectly
gray and because gray features that were not part of the
codes were not eliminated; thus this method was
abandoned.

In another approach, we tried to exploit the regular black
and white bar-shaped structures in the codes by taking the
Hadamard and the Discrete Cosine Transforms of the image
in various block sizes. Using labeled images showing the
positions of the codes, we trained a multi-layer neural

/

\
;
3

EBounding Dots

Fig 1. The visual code pattern to be detected. Black and white dots
indicate fixed values on the pattern while gray dots indicate data
bits that can be either 0 or 1.

Fig 2. Output of preliminary visual code detection work using
Harris corners: red dots indicate corners and blue lines indicate
regions suspected of containing codes. (a) shows the detector
functioning well on training_2.jpg while (b) shows the detector
functioning very poorly on training_5.jpg.

- E

-

510.99

Fig 3. Output black-and-white image for training_5.jpg, the “car wash”
image (pixels classified as black by the algorithm are labeled white on this
mask).

Fig 4. Output of passing black and white image through the rectangular guide

bar detector.

Fig 5. Results of selecting only guide bars from the previous image that
appear in the correct groupings and orientations for true guide bars.

2

network to recognize the codes using the transform inputs.
However, this method also had little success and was
rejected.

Finally, we decided to implement a detection algorithm
following the method presented by Michael Rohs [1]. This
algorithm is built around first finding the guide bars and
then using their positions and orientations in order to find
the whole visual code.

The first step in the algorithm was to detect the black
guide bars by converting the image to binary or black-and-
white. To do this, we de-noised the input by convolving
each color channel with a Gaussian kernel. Next we
obtained local averages, 7uve, Qave, and baye, by convolving
each channel with a normalized 20x20 kernel. The final
black-and-white image was constructed using the formula:

(r<(r

e —0.01))- (g <(g,,.-0.01))-(b<(b,, —0.01))
This method only considers pixels which are less than the
local average in all color channels as being black pixels,
and thus possible guide bar pixels. Fig. 3 shows the binary
output image for the test image used previously in Fig. 2b.
A region labeling operation was then performed to identify
contiguous blocks of white pixels (which, in these images,
signify black regions of the original color image).

This step typically returned far too many regions, so to
further refine our estimate of guide bar locations we selected
only those regions that met certain criteria. The first
criterion we used was size: we rejected all regions with less
than a certain number of pixels. The second criterion was
eccentricity, or the ratio of the longest to the shortest
dimension of the region.

We determined the eccentricity of each region by
removing the mean and then taking the singular value
decomposition (SVD) of the block’s pixels. The ratio of the
largest singular value to the smallest singular value yielded
a measure of eccentricity. Blocks with small or very large
eccentricities were removed from consideration as possible
guide bars. These two criteria significantly reduced the
number of possible guide bars, and the surviving blocks
from the example image in Fig. 3 are shown in Fig. 4.

The next step was to exploit the grouping and orientation
of the guide bars, specifically the requirements that they
always appear in pairs, oriented orthogonally to each other,
and with the long guide bar in line with end of the short
guide bar. We implemented this step by considering each
region and saving only bars with a second guide bar located
at the end of the first bar and at a nearly perpendicular angle
(a moderate tolerance was allowed because of perspective
distortion to the angle). The surviving pairs from the
example image are shown in Fig. 5. Some further testing
was also done on the relative lengths of the guide bars and
on the direction of rotation from the long to the short bar
(both of which were calculated from the left singular vectors
that were output in the SVD step).

Fig 6. Red “x”s mark the preliminary estimates of the locations of the four
bounding points for each valid visual code in Fig. 5 using the size and
orientation of the guide bars only for prediction.

Fig 7. Cropped, bilinearly-interpolated square image obtained using the
corner points in Fig. 6¢.

Fig 8. (a) shows Fig 7 converted to black and white using local image
mean. (b) right shows the remaining patches of Fig 7a after selecting only
regions with low eccentricity. Refined bounding point estimates are derived
as the centers of the white regions closest to the three non-guide bars
corners of the image.

B. Finding Bounding Corners for Each Code

Given the position of a possibly valid set of guide bars,
the other three corners (“bounding bits” in Fig. 1) of the
code had to be found. First we used the position and
dimensions of the known guide bars to guess where these
points would lie if the visual code was under a projective
transformation, not taking into account perspective or other
possible distortions. Example outputs of this step are
shown in Fig. 6 for the three valid visual codes in the
training image. In each of the three cases, the only
previously known point was that in the lower right corner
point that lies on the guide bars. The other three points
were the result of the parallelogram extrapolation. Fig. 6
shows that this first estimate was quite good but not
perfect.

To improve our results, we used these four initial points
to extract a square, bilinearly-interpolated section of the
image. We relaxed the four points to capture a larger
portion of the image, and an example transformed image is
shown in Fig. 7 for the visual code and points shown in
Fig. 6¢.

We then ran our black-and-white classification algorithm
again on these cropped images and obtained a series of
binary images with white regions indicating sections of
black. This first output is shown in Fig. 8a. We wanted to
find the true positions of the bounding dots which appear
in these images as isolated circular regions. Therefore we
ran the SVD-eccentricity check on each block and passed
only those with a low eccentricity. The regions that
survived this step for the image in Fig. 8a are shown in
Fig. 8b.

To find the true locations of the bounding dots we
selected the mean of the surviving blocks that were closest
to the three corners of the image (excluding the guide bar
corner). Then we converted from the cropped corner pixel
coordinates to the original, un-cropped image pixel
coordinates. This gave us a final estimate for the position
of the visual code, the guide bars, and the three bounding
bits. The output of this step for the codes in Fig. 6 is
shown in Fig. 9. The upper-left corner of each code is
marked with a blue circle while the other bounding points
are marked with red “x’s. These secondary estimates of the
bounding bits were quite accurate.

Now that we had the position and bounding shape of
each code, we extracted another bilinearly-interpolated
square image using the four corrected corner points and
converted the image to black and white. The method we
used here for black and white conversion, however, differs
from those used before and requires special discussion.

C. Decision Threshold Calculation

In order to convert the cropped, magnified visual code to
black and white, we initially tried thresholding the image
by its mean value. However, in visual codes with a
preponderance of 0’s or 1’s for data bits, the image mean
could end up being perilously close to the average value of
the 0°s or 1’s, and this could conceivably lead to some bits
being read incorrectly. This is illustrated below with an
example data set X which is the union of samples from two
Gaussian populations: 5000 samples were drawn from a 0-
mean, unit-variance Gaussian and 1000 samples were drawn
from a unit-variance Gaussian with a mean of 6. The
histogram of this population is shown in Fig. 10.

> 07 < 4

The mean of this population is 0.9905, and a vertical bar
is drawn on the graph for this value and is labeled .
Clearly o lies within one standard deviation of the mean of
the 0-mean Gaussian, so it would erroneously classify
many samples from that group as belonging to the set of
I’s.

Our solution was to “correct” the decision threshold in
an iterative manner. First we computed the mean of the set
as above. Then we constructed two subsets that were the
elements of X separated into groups that were above or
below that threshold:

Xy ={X, 1 X, <o}
X, ={X, X, =}

Then we calculated the next decision threshold , as the

average of the individual means of these two subsets:
|Xol X

X

X

0,i 1,i

u Xo+ X1 N
= =

2 21X, 2lx)]
For the Gaussian populations, we found , to be 1.8454, Hy Hy py b
which is clearly moving away from the 0-mean population, 250 / T
as desired. Continuing the iterative calculations, we see that
the decision threshold converges after only three more
applications at 2.9970, which is almost exactly equal to the
average of the two populations’ means (3). For such a value
to be convergent it must formally satisfy the equation: 150 -

i= i=

300 T T T T T T

X, X,
{Xi<pe } {Xizpa }

= +
2|{i:Xi < ym}| 2|{1':Xi > Mw}|

All of the values of u, and their corresponding sizes of the

100

U

a0

subset X o are shown below for the Gaussian example: 0
4 -2 1] 2 4 B a8 10

u, = {09905, 18454, 27172, 29730, 29970} Fig 10. Histogram of combined Gaussian populations to illustrate an example
of the action of the iterative decision threshold correction algorithm.

|{Xl : X[< u; }| = {4 191 , 4849, 4985, 4998, 4998} Corrections move the threshold away from the mean of the 0 population and

into the “trough” in between the two populations.

These values of u, are also drawn on Fig. 11 and clearly 2 [|| |

show that the result of the iterative correction has been to
locate the “trough” in the histogram in between the means
of the two populations. This has had the desired effect of
moving the decision threshold away from the mean of any
dominant population in the sample.

We did not investigate the effects of this iterative
calculation in depth, but we verified that the convergent
value need not be unique. By seeding the above
calculations with a value of (= 6, the sequence converged
at 3 =3.0006, which ended up classifying two more points
as 0’s than did the previous threshold. While these two
solutions are distinct, they are only trivially distinct, so we
did not concern ourselves with this effect in
implementation. Also, to avoid possibly oscillatory
conclusions, in actual implementation we only ran the » +|#,
decision threshold algorithm up to ..

Fig 11. Effects of mean versus iterated thresholding. (a) shows a code with
all 1 data bits that was converted to black and white using the image mean
while (b) shows conversion using the corrected threshold. (¢) and (d) show
the same for the case of a code with all 0 data bits.

> 07 <

Fig 12. Cropped, bilinearly-interpolated, decision-thresholded output
for the code shown in Figs. 6¢ and 9c using refined corner point
estimates. Gray lines show the expected boundaries between bits of
the visual code.

The effects of this corrected threshold on actual data is
illustrated in Fig. 11 which considers the case of two codes
with either all 1 or all 0 data bits. Fig. 12a shows the all-
1’s code converted to black and white using the image
mean as the threshold, and clearly the result is that an
undesirable
number of white pixels has been read as black since the
image mean is much closer to the mean of the white value.
Figure 11b shows the same image read using the corrected
threshold, and the flaws in 1la have been greatly
ameliorated. The code with all 0 bits shown in Figs. 1lc
and 11d shows similar improvement thanks to the corrected
threshold: fewer black pixels are erroneously read as white
ones.

D. Reading and Verifying Code Bits

Now given a position for each code, we extracted a final
bilinearly-interpolated, square image using the four
corrected bounding points. We chose to extrapolate to an
image of size 220x220 since this would allot a 20x20
region for each bit of the visual code. Then we converted
the image to grayscale and, using the decision threshold
calculation discussed above, we converted the image to
binary. The output of this step for the same code featured in
Figs. 7 and 8 is shown in Fig. 12. Gray lines were drawn
on this figure to show the expected boundaries between
pixels of the code. Clearly the actual pixels fit very well
inside of their expected locations.

However from the figure it is also clear that the entirety
of each pixel’s region may not be filled with a majority of
the correct white or black value. Thus we averaged only the
middle 10x10 patch of each pixel’s region and evaluated it
with respect to a threshold to obtain the final 0 or 1 value
for that bit.

After this processing step, we obtained an 11x11 bit
pattern for the whole image. As a final check we tested how
well these bit values corresponded to the expected fixed
pattern described by the guide bars and bounding bits
shown in Fig. 1. In particular, each visual code has 23
fixed white bits and 15 fixed black bits. We checked the
difference of the bits we read off with the fixed pattern, and
we only passed codes that read at least 20 of the 23 white

TABLE 1
RESULTS FOR ORIGINAL TRAINING IMAGES

Training Score Possible Percent Execution Time
Image Score (sec)

1 83 83 100% 5.5

2 166 166 100% 8.9

3 249 249 100% 12.3

4 83 83 100% 5.9

5 249 249 100% 12.6

6 83 83 100% 5.5

7 166 166 100% 12.4

8 83 83 100% 5.4

9 249 249 100% 12.6

10 249 249 100% 12.5

11 83 83 100% 5.8

12 166 166 100% 12.4

Mean Execution Time (sec): 9.3

Results summary for the original training images.

bits correctly and 13 of the 15 black bits correctly. This
final check proved essential since sometimes all of our
processing up until this point would still feed spurious
images into this last part of the program.

III. RESULTS

A. Given Test Images

After adjusting some of the parameters of our detection
algorithm, we obtained perfect results on the twelve test
images provided on the EE368 web site. Our detection
program found every visual code and read its data bits with
100% accuracy with no repeats or false positives. The
output of the “evaluate” program for our code is shown in
Table I. The average elapsed computation time per image
was 9.3 seconds, and this was well below the absolute time
limit of 60 seconds per image, so we decided not to seek to
optimize our code.

B. Original Test Images

In order to ensure that our detection algorithm was
working to an even higher degree, we created new visual
codes and took additional sample images for testing. The
extra codes we generated and the full set of additional
sample images are shown attached in the Appendix as
Images 1-30. In order to test the limits of the abilities of
our detection algorithm, most of our images contained
extreme cases of background clutter, perspective and scaling
variation, special-case bit patterns, and/or lighting
conditions.

Our algorithm achieved perfect scores on 25 of the 30
additional test images, failing only on the most challenging
images. A summary of the results of the evaluate program
on these additional images is shown in Table II, and a note
accompanies each image that produced errors, explaining
why it failed. The average execution time on the
supplementary set was 8.2 seconds per image, with a
maximum execution time of 18.8 seconds, well within the
time constraint of 60 seconds per image.

The algorithm failed to locate several codes in images
that featured sudden changes in illumination across the

> 07 <

TABLE 11
RESULTS FOR SUPPLEMENTARY TRAINING IMAGES
Appendix Score Possible Percent Execution
A Figure Score Time (sec)
1 166 166 100% 9.1
2 249 249 100% 18.7
3 166 166 100% 8.5
4 166 166 100% 9.4
5 83 83 100% 5.2
6 166 166 100% 9.0
7 83 83 100% 5.1
8 249 249 100% 11.9
9 166 166 100% 9.6
10 83 83 100% 5.2
11 249 249 100% 11.8
12 166 166 100% 12.8
13 83 83 100% 6.0
14 166 166 100% 8.7
15 83 83 100% 5.7
16 83 166 50% 10.0
1 code missed: uneven lighting on code due to a shadow
17 166 166 100% 10.7
18 83 83 100% 5.2
19 83 83 100% 9.1
20 0 83 0% 1.7
1 code missed: too large, blurry
21 166 166 100% 8.5
22 83 83 100% 5.8
23 0 83 0% 5.6
1 code missed: uneven lighting on code due to bright lighting
24 83 83 100% 53
25 166 166 100% 8.8
26 166 166 100% 11.7
27 83 83 100% 5.0
28 166 166 100% 144
29 0 166 0% 34
2 codes missed: too small
30 78 83 94% 49

5 bit errors: extreme red light illumination variance
Mean Execution Time (sec): 8.2

Results summary for the supplementary training images.

body of the code (an example is Image 16 which shows a
dark shadowing covering half of the code). In Image 30, a
few data bits were reversed due to an intense red light
incident on the code, but the code itself was still located
correctly. Our algorithm works by considering only the
mean illumination conditions over the entire code, and this
deals well with gradual illumination changes across the
entire image. However, a much more sophisticated black-
and-white detection scheme would be needed to detect stark
illumination changes across a single visual code.

Our detector also failed on some extremely large or small
codes. The small codes (Image 29) could not be found

6

because the guide bars blended into a single black region
which the detector could not resolve as two separate bars.
Very large codes (Image 20) were not always found because
the guide bars are sometimes split into several pieces by
our detector’s initial step of conversion to black and white.
This was because there were large neighborhoods of all-
black pixels, so the local averaging produced some black
pixels that were read as white pixels since they were above
their local mean. In order to handle these cases, we would
need to adjust our black-and-white classification scheme to
work appropriately at low and high scales, which would
require estimating the size of the codes before identifying
all of their bits. However, the algorithm already handles a
reasonably wide range of scale variation so we did not deem
this problem critical enough to fix for the final submission.

IV. CONCLUSIONS

Overall, the algorithm is very robust in identifying
visual codes and can handle a wide variety of difficult
cases. This allows the user to be less concerned with exact
positioning and will eliminate the need for rescanning
codes. However, should a second scan be needed, the
computation time is within a few seconds and the user will
not have to wait long.

APPENDIX A. DIVISION OF LABOR

For much of the project, coding was typically done with
all members present and contributing, though each member
was primarily responsible for specific segments of the
project. The division was as follows:

Bryan Brudevold — initial probable guide bar location,
including black location and eccentricity check.

Paul Reynolds — secondary guide bar check, including
guide bar pairing, and initial and final corner point
approximations.

Paul Baumstarck — Perspective correction, thresholding
and visual code reading.

APPENDIX B. SUPPLEMENTARY IMAGES

Appendix B shows the set of supplementary training
images we used and appears attached as the next two pages.

REFERENCES

[1] M. Rohs, “Real-World Interaction with Camera-Phones,” in 2
International Symposium on Ubiquitous Computing Systems (UCS
2004), Tokyo, Japan, Nov. 2004.

| S

1 748 [0

e 2

Image 21
o =T
. ,i'fl ity p-"' :

Image 24

i

Image 25

T

Image 28

