
Group 09 - EE 368, Digital Image Processing, Spring 2006 1

Abstract—This report describes and analyzes the performance

of an algorithm for detecting visual barcode markers from cell
phone camera images. Topics include feature detection, adaptive
thresholding, interpolation, and testing methods.

I. INTRODUCTION
Visual codes can be used to label and identify numerous

objects. One method of reading visual codes involves taking
pictures of the code markers with a low-resolution camera to
identify and perhaps find out relevant information about an
object. However, recognizing a bar code from surrounding
objects and image artifacts can be a challenge. To successfully
implement a visual code detection system, image processing
algorithms are required. This report discusses one algorithm
for bar code detection.

The project code performs two main functions: finding the
marker locations and finding the pixel values from the marker
locations. Implementation of these functions requires feature
detection, adaptive thresholding, and linear interpolation.

The results obtained from implementation of the algorithm
were excellent for the training images provided on the course
website, and were very good—though not perfect—for other
sets of images. These results, and considerations about the
time required to perform the algorithm, are discussed.

II. FINDING THE MARKER LOCATIONS
 The function to detect the markers is called findmarkers.m. It
takes the following steps:

- Produce a black and white version of the given image. The
built-in Matlab functions for doing this can’t be used, since
they use a global threshold for determining if a point should be
black or white. Instead, adaptive thresholding is used, where a
small window is moved over the image and the threshold
calculated for each such window. This is done using the
function adaptivethreshold.m. By trial and error, the best
window size for a typical image was determined to be 11x11
pixels. However, if an image is taken very close up to a code
marker, this image size will fail. Therefore, findmarkers.m
increases the image size to 22x22 pixels if it doesn’t detect
anything and tries again. If nothing comes up from that either,
it tries a 33x33 pixel window, and finally a 44x44 pixel
window before it finally gives up.

- Label the regions of the black and white image using
bwlabel (the image is actually “flipped” first, i.e. black regions

turned into white regions and vice versa, because the black
regions should be labeled, not the white ones).

- Then find the regions which are possibly guidebars, using
the function findguidebars.m. This function looks at the size
and shape of each region and determines if it could possibly be
a guidebar.

-The criterion for the size is that the region is not bigger than
7/121 of the image (this upper bound is reached if the marker
completely fills out the image) and not smaller than 10 pixels
(if it was any smaller, the marker would be impossible to read
anyway).

- The criteria for the shape are that the ratio of the maximum
and minimum axis of the region is no bigger than 11.5, but no
smaller than 3.5. These values were determined empirically.
Of course, if the image was perfect and the camera held at a
90 degree angle from the marker, the ratio should be 5 and 7
for the two guidebars. However, this is seldom the case, since
the image is of low quality and often taken at a more obtuse
angle.

-The major and minor axes of each region are found using the
function ellipse_param.m, which returns the ratio of the axes,
the values of the axes and a vector parallel to the major axis.
These values are found using the second values of the x- and
y-values of the pixels of the regions [1]. The following image
shows possible guidebars for training image number 3.

Figure 1: Possible Guidebars for Training_3.jpg

- Then try to use these guidebar candidates to detect the
corners of code markers using the function
findmarkercorners.m, which does the following things:

Visual Code Marker Detection
Ryan Coutts, Jessica Faruque, and Bragi Sveinsson

Group 09 - EE 368, Digital Image Processing, Spring 2006 2

- Find the corners of all the possible guidebars found before
using the function findregioncorners.m, which calls the
function findcorners.m for each possible guidebar.

- Find all regions that are possibly dots using the function
finddots.m. It works basically the same as findguidebars.m,
except here the maximum/minimum axis ratio is required to be
less than 1.8 (a value found empirically) and the minimum
allowed size is lowered to 5 pixels. The following image
shows possible dots for training image number 3.

Figure 2: Possible Dots for Training Image 3

- Find all guidebar candidates which could possibly be a pair
of guidebars belonging to a single marker using the function
findbarpairs.m. This is done by comparing guidebar candidate
no. i to guidebar candidates no. i+1,…,N for i between 1 and
N-1, where N is the number of guidebar candidates. If the two
guidebar candidates being compared have sort of the right axis
ratio (the ratio of the longer bar length to the shorter one
should be less than 3), the right size ratio (one bar should not
have more than twice the number of pixels of the other bar),
are sort of correctly aligned (the angle between the bars should
not be less than thirty degrees) and are close to each other (in
the sense that a corner of one bar is within length L of a corner
of the other bar, where L is the length of the bar), the two bars
are labeled as a possible pair. All of these threshold values for
determining whether we have a pair or not were determined
empirically. This grossly overestimates the number of
guidebar pairs, but later checks ensure that bad pairs are
thrown away. The important thing is that no true guidebar
pairs are left out.

- Make an estimate of where the corners of the code marker
should be for every guidebar pair. This is done by starting at
the point on the vertical bar (looking at the code marker the
normal way, as shown on the class website) which should be
closest to the upper-right corner, then travelling the distance H
in the direction of v_v, where H is an estimate of the “height”
of each square of the marker and v_v is the orientation vector
of the marker, found using the function ellipse_param.m (it is
made sure that v_v points in the right direction). This gives an
estimate of the upper-right corner of the marker. Likewise, the
distance L is traveled in the direction of v_h from the point on

the horizontal bar which should be closest to the lower-left
corner, where L is an estimate of the “width” of each square of
the marker and v_h is the orientation vector of the horizontal
guidebar. The lower-right corner should simply be the lower-
right corner of the horizontal guidebar. The last corner point is
estimated by using the three other estimated points and
assuming the marker to be a parallelogram.

- If the estimated corners are not out of the image boundaries,
the algorithm tries to adjust the points to their right values
using the function fixpoints.m, which does the following:

- The true value of the upper-right corner should be in the
center of a dot. So an ellipse is drawn around the estimate of
the upper-right corner, with the major axis parallel to the
vertical guidebar. This is done with the function
alignwithdot1.m. The ellipse is made big enough to include
the true right dot, unless the estimate is very far off. If
multiple dots are found within the ellipse, the dot closest to the
estimate of the lower-right corner is chosen. If we can’t find a
dot, or the dot chosen results in an error (see below), that pair
of guidebar candidates does not give a code marker and is
thrown away.
 The same is done for the lower-left corner, i.e. an ellipse is
drawn with its major axis parallel to the horizontal guidebar
and any dots within that ellipse detected. This is done with the
function alignwithdot3.m. The difference is that if multiple
dots are detected, then the dot furthest away from the estimate
of the lower-right corner is chosen first (since there can be
dots between the lower-left corner dot and the horizontal
guidebar). If the choice of this dot doesn’t result in an error it
is as a corner, otherwise the same procedure is repeated for the
dot to its left. If all the dots give errors or no dot is found, the
guidebar pair is thrown away.
 Finally, the two dots found (the upper-right one and lower-
left one) and the lower-right corner estimate, which we don’t
alter, are used to estimate the location the upper-left corner dot
by assuming the marker to be a parallelogram. A circle is
drawn around this estimate and the dot inside that circle which
is the furthest away from the lower-right dot is chosen. The
following figure explains this more graphically.

Figure 3: Selection of Corner Points

Group 09 - EE 368, Digital Image Processing, Spring 2006 3

- After these dots are found, the algorithm checks whether the
dots are roughly the same size, and whether the smaller
guidebar is at least 2.5 times bigger than the smallest dot. It is
also made sure that the same dot hasn’t been counted twice. If
this seems all to be in order, the four points are returned as the
location of a code bar.

- This algorithm throws out almost all things mistakenly
detected as a marker. Some things occationally slip through,
but they are taken care of when the marker is read, by
checking the fixed values of the markers.

III. VALIDATING DETECTED MARKERS
The methods and parameters used in Part II caused points to

be detected that were not actually markers, or false positives.
In these cases, the false positives shared some similar features
with the regions containing the actual markers. It is preferred
that the feature detection algorithm included false positives
rather than miss some actual markers. Nevertheless, including
the coordinates of the false positives in the processing for
determining the element values causes a large number of
erroneous results. To account for this, some further operations
were implemented to exclude these false positives. Two
different sets of checks were implemented: a set of simple
preliminary checks, and a more detailed check comparing
fixed element values.

Initially, three preliminary checks were performed using the
four coordinates of the supposed marker. Comparing the fixed
element values involved dividing the region surrounded by the
coordinates into an array of 121 elements and sampling the
fixed elements. This involved some pre-processing and
refining the coordinates, which will be discussed in more
detail in Section IV. In the 121-element array, there are 38
fixed elements if the white spaces are included.

The decision made using the fixed elements is binary: if the
elements in the test array match the 38 fixed elements, then
the test array is actually a marker; otherwise it is not. When
this algorithm was implemented with the requirement that all
38 fixed element values are correct, some of the actual
markers were found to be false positives. To prevent or reduce
this problem, it was instead required that only a fraction of the
elements should match. In the code implemented, the
determination that the array was actually a marker required
that any 24 of the 38 locations matched the fixed element
array. This number was empirically chosen based on the
training images and some additional images taken by the
authors of this report. This threshold allowed all of the correct
markers in the training images to be detected while excluding
the erroneously detected marker coordinates.

IV. DETERMINING PIXEL VALUES FROM MARKERS
To determine the pixel values and obtain the 83-element

results, the following steps were used: refining the
coordinates, creating an array of coordinates, sampling the
array elements, and comparing the results with the original
array elements. The detailed check for false positives
mentioned in the previous section is also done in the function

call used for this part of the algorithm. This was because the
check made use of the 121 element array generated for finding
the 83-element results.

A. Pre-processing
It was found that some pre-processing of the coordinates

were required to accurately find the pixel values.
1) Image thresholding: Like Section I, this part of the

program used adaptive thresholding to obtain a black-and-
white image of the markers. However, the threshold values
determined in Part I were not used, since better adaptive
thresholding could be performed after the size in pixels of
each region containing a marker was determined. In the
adaptive thresholding, the local threshold value was
determined over 0.3, or approximately one-third of the size of
the region containing each marker. This value was determined
empirically. See the next section for a detailed discussion of
adaptive thresholding.

2) Coordinate Refinement: To ensure that the detection of
marker elements is accurate, further refinement of the four
coordinates from part I was performed. The coordinates from
Part I provided an approximate location of the corners of the
image; this code found better estimates of the corners of the
image.

Before creating a grid, the corner points required more
accurate refinement in order to provide better results. The
points that are found from the barcodes are the center points of
the square dots around the edges and a dot on the short bar that
is somewhere in the corner. As can be seen in the figure, the
corners are initially off by a lot. Then the program starts by
finding all 5 of the stationary marker points. Then from the
center of the square points it moves towards the edge of the
dot until it finds the edge. Some morphological operations are
used for this process. For the non-square guide bar it is not as
easy to find a starting point, such as the center of the squares,
so what the program finds the center of the long bar and the
center of the short bar. Then it extrapolates a line from the
corner dots through the non-square bars such that the
intersection of the 2 lines intersect in the bottom right corner
of the guide bar which is a pretty good estimate of where the
center would lie if it were a square dot. Essentially, the
program draws a border around the barcode after connecting
the dots that were found. The program then finds the
intersection of these dots, creating better corners. In order to
improve the accuracy the program, shrink the box by traveling
in the direction of the point diagonal to it until it hits a black
region. This last step was critical to an improved bit error
rate.

Group 09 - EE 368, Digital Image Processing, Spring 2006 4

Figure 4: Corners Before and After Corner-Enhancing Algorithm

Two cases were possible in the thresholded image for each

of the corner elements: either the coordinate is black or white.
If the coordinate was white, then the program used the nearest
black pixel in the direction towards the center of the marker as
a new approximation for the corner. Empirically, this was
shown to produce better results for all test images.

B. Creating an Array of Marker Element Values
Once the four corners of the marker were determined to
reasonable accuracy, they were interpolated linearly to find the
approximate center point and four corner points of each
element in the bar code marker. Essentially, a grid of 121
squares was created using the endpoints using linear
interpolation.

C. Sampling the Array Elements
To obtain the results, a few different schemes were

attempted to find the element value (1 or 0) of each square in
the 121-element array. These were: use of the nearest pixel to
the center sample, bilinear transformation of the center sample
value to the four closest pixels, and averaging over a group of
pixels around the sample. All three methods produced
approximately the same error rates when comparing with the
ground truth values. In the interest of saving processing time,
the nearest pixel to the center sample was used. A sampled
image is shown below.

Figure 5: Sampled Image in Original Context; Close-up Thresholded Sampled
Image

D. Comparing with the Ground Truth Values
Using the thresholded image and the 121 element grid, a 83-

by-1 matrix of binary values was created to represent the
ground values in the 83 critical squares. The ordering of the
elements was the same as in the ground truth matrix given,
and bit-by-bit comparison of the results was performed.

V. ADAPTIVE THRESHOLDING FOR GRAY SCALING
Due to some of the various shadow gradients that are

apparent in the camera phone images when global
thresholding is applied to the images, if there is a shadow on
the marker, it is deleted from the picture. The solution to this
problem was to use adaptive thresholding. This method takes
a window of a given size and finds the threshold that would be
used for that window individually. Then the window snakes
around the image either incrementing or decrementing the
threshold value based on the previous threshold value and the
current threshold value of the window. This method allows
the visual code markers to be found more easily and
consistently. An example of the usefulness of this application
is shown.

Group 09 - EE 368, Digital Image Processing, Spring 2006 5

Figure 6: Different Thresholding Methods

VI. TESTING METHODS
In order to test the algorithm, the training images provided

on the class website were first used. After successful
detection of these images, the program was tested on 25
additional images taken by the authors of this report. These
test images were much more difficult to detect than the images
provided on the course website. For instance, none of the
provided code markers were upside down. None of the
markers were very small or very large compared to the image
size. Another consideration was whether the markers
resembled other features that were present in the stationary
points. A couple of images from the testing stage are shown.
The program is relatively successful in detecting only the real
barcodes in these images.

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

Figure 7: Two Test Images and Thresholded Results

VII. TIMING CONSIDERATIONS
The time taken to process was not considered as critical as

the accuracy of the detection. Once the code of the plots and
data used for error checking was removed, the time taken to
process each image was reduced. The final times for each
image are shown in the plot below.

Group 09 - EE 368, Digital Image Processing, Spring 2006 6

0 2 4 6 8 10 12
0

5

10

15
Time for each training image in seconds

Training image number

T
i
m
e

i
n

s
e
c
o
n
d
s

Figure 8: Timing Used for Training Images

VIII. DISCUSSION

The results from our finished program with the test images

are excellent. First of all, the score from the evaluate function
is 1909, which is 100 percent correct. When tested on the 25
additional images, the results were relatively satisfying,
though not perfect. Specifically, there were some barcodes
that were not on flat paper, so the assumption that the barcode
was a parallelogram was not satisfied. Also, some of the
barcode images were very small so the program did not detect
them.

IX. CONCLUSION
 Finding the bar code markers in a random image is not a

trivial task. There are many considerations that must be
accounted for in order to have a successful detection and
reading of the marker. Such considerations were how to
convert the image to a black and white image to find the
barcodes, how to find the barcodes, reading the barcodes, and
checking to make sure it really is a barcode. Implementing
this algorithm required making sure that the program does not
have any errors no matter what the input image is, as long as it
is the correct format. The algorithm was designed to not miss
anything so there are many checks in place that do take up
some CPU time, which may slow down the algorithm.
However, these checks are essential in successful
implementation of the program.

APPENDIX: DIVISION OF LABOR
Ryan Coutts: Boundary box reshaping for marker,

integration, image quality enhancing, adaptive thresholding,
creating additional test images, haralick corner detector,
finding marker center.

Jessica Faruque: Finding the pixel values from markers,
image quality enhancing, integration and testing, checking if
marker locations are actually images, bilinear interpolation.

Bragi Sveinsson: Finding the marker locations.

REFERENCES
[1] Rohs, Michael: Real-World Interaction with Camera-Phones, 2nd

International Symposium on Ubiquitous Computing Systems (UCS
2004), Tokyo, Japan, November 2004.

