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Abstract—This report describes and analyzes the performance 

of an algorithm for detecting visual barcode markers from cell 
phone camera images.  Topics include feature detection, adaptive 
thresholding, interpolation, and testing methods.  

I. INTRODUCTION 
Visual codes can be used to label and identify numerous 

objects. One method of reading visual codes involves taking 
pictures of the code markers with a low-resolution camera to 
identify and perhaps find out relevant information about an 
object. However, recognizing a bar code from surrounding 
objects and image artifacts can be a challenge. To successfully 
implement a visual code detection system, image processing 
algorithms are required. This report discusses one algorithm 
for bar code detection. 

The project code performs two main functions: finding the 
marker locations and finding the pixel values from the marker 
locations. Implementation of these functions requires feature 
detection, adaptive thresholding, and linear interpolation. 

The results obtained from implementation of the algorithm 
were excellent for the training images provided on the course 
website, and were very good—though not perfect—for other 
sets of images. These results, and considerations about the 
time required to perform the algorithm, are discussed. 
 

II. FINDING THE MARKER LOCATIONS 
 The function to detect the markers is called findmarkers.m. It 
takes the following steps: 
 
- Produce a black and white version of the given image. The 
built-in Matlab functions for doing this can’t be used, since 
they use a global threshold for determining if a point should be 
black or white. Instead, adaptive thresholding is used, where a 
small window is moved over the image and the threshold 
calculated for each such window. This is done using the 
function adaptivethreshold.m. By trial and error, the best 
window size for a typical image was determined to be 11x11 
pixels. However, if an image is taken very close up to a code 
marker, this image size will fail. Therefore, findmarkers.m 
increases the image size to 22x22 pixels if it doesn’t detect 
anything and tries again. If nothing comes up from that either, 
it tries a 33x33 pixel window, and finally a 44x44 pixel 
window before it finally gives up. 
 
-  Label the regions of the black and white image using 
bwlabel (the image is actually “flipped” first, i.e. black regions 

 
 

turned into white regions and vice versa, because the black 
regions should be labeled, not the white ones). 
 
-  Then find the regions which are possibly guidebars, using 
the function findguidebars.m. This function looks at the size 
and shape of each region and determines if it could possibly be 
a guidebar.  
 
-The criterion for the size is that the region is not bigger than 
7/121 of the image (this upper bound is reached if the marker 
completely fills out the image) and not smaller than 10 pixels 
(if it was any smaller, the marker would be impossible to read 
anyway).  
 
- The criteria for the shape are that the ratio of the maximum 
and minimum axis of the region is no bigger than 11.5, but no 
smaller than 3.5. These values were determined empirically. 
Of course, if the image was perfect and the camera held at a 
90 degree angle from the marker, the ratio should be 5 and 7 
for the two guidebars. However, this is seldom the case, since 
the image is of low quality and often taken at a more obtuse 
angle. 
 
-The major and minor axes of each region are found using the 
function ellipse_param.m, which returns the ratio of the axes, 
the values of the axes and a vector parallel to the major axis. 
These values are found using the second values of the x- and 
y-values of the pixels of the regions [1]. The following image 
shows possible guidebars for training image number 3. 

 
Figure 1: Possible Guidebars for Training_3.jpg 

 
-  Then try to use these guidebar candidates to detect the 
corners of code markers using the function 
findmarkercorners.m, which does the following things: 
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- Find the corners of all the possible guidebars found before 
using the function findregioncorners.m, which calls the 
function findcorners.m for each possible guidebar. 
 
- Find all regions that are possibly dots using the function 
finddots.m. It works basically the same as findguidebars.m, 
except here the maximum/minimum axis ratio is required to be 
less than 1.8 (a value found empirically) and the minimum 
allowed size is lowered to 5 pixels. The following image 
shows possible dots for training image number 3. 

 
Figure 2: Possible Dots for Training Image 3 

 
- Find all guidebar candidates which could possibly be a pair 
of guidebars belonging to a single marker using the function 
findbarpairs.m. This is done by comparing guidebar candidate 
no. i to guidebar candidates no. i+1,…,N for i between 1 and 
N-1, where N is the number of guidebar candidates. If the two 
guidebar candidates being compared have sort of the right axis 
ratio (the ratio of the longer bar length to the shorter one 
should be less than 3), the right size ratio (one bar should not 
have more than twice the number of pixels of the other bar), 
are sort of correctly aligned (the angle between the bars should 
not be less than thirty degrees) and are close to each other (in 
the sense that a corner of one bar is within length L of a corner 
of the other bar, where L is the length of the bar), the two bars 
are labeled as a possible pair. All of these threshold values for 
determining whether we have a pair or not were determined 
empirically. This grossly overestimates the number of 
guidebar pairs, but later checks ensure that bad pairs are 
thrown away. The important thing is that no true guidebar 
pairs are left out. 
 
- Make an estimate of where the corners of the code marker 
should be for every guidebar pair. This is done by starting at 
the point on the vertical bar (looking at the code marker the 
normal way, as shown on the class website) which should be 
closest to the upper-right corner, then travelling the distance H 
in the direction of v_v, where H is an estimate of the “height” 
of each square of the marker and v_v is the orientation vector 
of the marker, found using the function ellipse_param.m (it is 
made sure that v_v points in the right direction). This gives an 
estimate of the upper-right corner of the marker. Likewise, the 
distance L is traveled in the direction of v_h from the point on 

the horizontal bar which should be closest to the lower-left 
corner, where L is an estimate of the “width” of each square of 
the marker and v_h is the orientation vector of the horizontal 
guidebar. The lower-right corner should simply be the lower-
right corner of the horizontal guidebar. The last corner point is 
estimated by using the three other estimated points and 
assuming the marker to be a parallelogram. 
 
- If the estimated corners are not out of the image boundaries, 
the algorithm tries to adjust the points to their right values 
using the function fixpoints.m, which does the following: 
 
- The true value of the upper-right corner should be in the 
center of a dot. So an ellipse is drawn around the estimate of 
the upper-right corner, with the major axis parallel to the 
vertical guidebar. This is done with the function 
alignwithdot1.m. The ellipse is made big enough to include 
the true right dot, unless the estimate is very far off. If 
multiple dots are found within the ellipse, the dot closest to the 
estimate of the lower-right corner is chosen. If we can’t find a 
dot, or the dot chosen results in an error (see below), that pair 
of guidebar candidates does not give a code marker and is 
thrown away. 
 The same is done for the lower-left corner, i.e. an ellipse is 
drawn with its major axis parallel to the horizontal guidebar 
and any dots within that ellipse detected. This is done with the 
function alignwithdot3.m. The difference is that if multiple 
dots are detected, then the dot furthest away from the estimate 
of the lower-right corner is chosen first (since there can be 
dots between the lower-left corner dot and the horizontal 
guidebar). If the choice of this dot doesn’t result in an error it 
is as a corner, otherwise the same procedure is repeated for the 
dot to its left. If all the dots give errors or no dot is found, the 
guidebar pair is thrown away. 
 Finally, the two dots found (the upper-right one and lower-
left one) and the lower-right corner estimate, which we don’t 
alter, are used to estimate the location the upper-left corner dot 
by assuming the marker to be a parallelogram. A circle is 
drawn around this estimate and the dot inside that circle which 
is the furthest away from the lower-right dot is chosen. The 
following figure explains this more graphically. 

 
Figure 3: Selection of Corner Points 
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- After these dots are found, the algorithm checks whether the 
dots are roughly the same size, and whether the smaller 
guidebar is at least 2.5 times bigger than the smallest dot. It is 
also made sure that the same dot hasn’t been counted twice. If 
this seems all to be in order, the four points are returned as the 
location of a code bar. 
 
- This algorithm throws out almost all things mistakenly 
detected as a marker. Some things occationally slip through, 
but they are taken care of when the marker is read, by 
checking the fixed values of the markers. 

 

III. VALIDATING DETECTED MARKERS 
The methods and parameters used in Part II caused points to 

be detected that were not actually markers, or false positives. 
In these cases, the false positives shared some similar features 
with the regions containing the actual markers. It is preferred 
that the feature detection algorithm included false positives 
rather than miss some actual markers. Nevertheless, including 
the coordinates of the false positives in the processing for 
determining the element values causes a large number of 
erroneous results. To account for this, some further operations 
were implemented to exclude these false positives. Two 
different sets of checks were implemented: a set of simple 
preliminary checks, and a more detailed check comparing 
fixed element values.  

Initially, three preliminary checks were performed using the 
four coordinates of the supposed marker. Comparing the fixed 
element values involved dividing the region surrounded by the 
coordinates into an array of 121 elements and sampling the 
fixed elements. This involved some pre-processing and 
refining the coordinates, which will be discussed in more 
detail in Section IV. In the 121-element array, there are 38 
fixed elements if the white spaces are included.  

The decision made using the fixed elements is binary: if the 
elements in the test array match the 38 fixed elements, then 
the test array is actually a marker; otherwise it is not. When 
this algorithm was implemented with the requirement that all 
38 fixed element values are correct, some of the actual 
markers were found to be false positives. To prevent or reduce 
this problem, it was instead required that only a fraction of the 
elements should match. In the code implemented, the 
determination that the array was actually a marker required 
that any 24 of the 38 locations matched the fixed element 
array. This number was empirically chosen based on the 
training images and some additional images taken by the 
authors of this report. This threshold allowed all of the correct 
markers in the training images to be detected while excluding 
the erroneously detected marker coordinates. 

IV. DETERMINING PIXEL VALUES FROM MARKERS 
To determine the pixel values and obtain the 83-element 

results, the following steps were used: refining the 
coordinates, creating an array of coordinates, sampling the 
array elements, and comparing the results with the original 
array elements. The detailed check for false positives 
mentioned in the previous section is also done in the function 

call used for this part of the algorithm. This was because the 
check made use of the 121 element array generated for finding 
the 83-element results. 

A. Pre-processing 
It was found that some pre-processing of the coordinates 

were required to accurately find the pixel values. 
1) Image thresholding: Like Section I, this part of the 

program used adaptive thresholding to obtain a black-and-
white image of the markers. However, the threshold values 
determined in Part I were not used, since better adaptive 
thresholding could be performed after the size in pixels of 
each region containing a marker was determined. In the 
adaptive thresholding, the local threshold value was 
determined over 0.3, or approximately one-third of the size of 
the region containing each marker. This value was determined 
empirically. See the next section for a detailed discussion of 
adaptive thresholding. 

2) Coordinate Refinement: To ensure that the detection of 
marker elements is accurate, further refinement of the four 
coordinates from part I was performed. The coordinates from 
Part I provided an approximate location of the corners of the 
image; this code found better estimates of the corners of the 
image.  

Before creating a grid, the corner points required more 
accurate refinement in order to provide better results. The 
points that are found from the barcodes are the center points of 
the square dots around the edges and a dot on the short bar that 
is somewhere in the corner.  As can be seen in the figure, the 
corners are initially off by a lot.  Then the program starts by 
finding all 5 of the stationary marker points.  Then from the 
center of the square points it moves towards the edge of the 
dot until it finds the edge.  Some morphological operations are 
used for this process.  For the non-square guide bar it is not as 
easy to find a starting point, such as the center of the squares, 
so what the program finds the center of the long bar and the 
center of the short bar. Then it extrapolates a line from the 
corner dots through the non-square bars such that the 
intersection of the 2 lines intersect in the bottom right corner 
of the guide bar which is a pretty good estimate of where the 
center would lie if it were a square dot.  Essentially, the 
program draws a border around the barcode after connecting 
the dots that were found.  The program then finds the 
intersection of these dots, creating better corners.  In order to 
improve the accuracy the program, shrink the box by traveling 
in the direction of the point diagonal to it until it hits a black 
region.  This last step was critical to an improved bit error 
rate. 
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Figure 4: Corners Before and After Corner-Enhancing Algorithm 

 
Two cases were possible in the thresholded image for each 

of the corner elements: either the coordinate is black or white. 
If the coordinate was white, then the program used the nearest 
black pixel in the direction towards the center of the marker as 
a new approximation for the corner. Empirically, this was 
shown to produce better results for all test images. 

B. Creating an Array of Marker Element Values 
Once the four corners of the marker were determined to 
reasonable accuracy, they were interpolated linearly to find the 
approximate center point and four corner points of each 
element in the bar code marker. Essentially, a grid of 121 
squares was created using the endpoints using linear 
interpolation. 

C. Sampling the Array Elements 
To obtain the results, a few different schemes were 

attempted to find the element value (1 or 0) of each square in 
the 121-element array. These were: use of the nearest pixel to 
the center sample, bilinear transformation of the center sample 
value to the four closest pixels, and averaging over a group of 
pixels around the sample. All three methods produced 
approximately the same error rates when comparing with the 
ground truth values. In the interest of saving processing time, 
the nearest pixel to the center sample was used. A sampled 
image is shown below. 

 

 
Figure 5: Sampled Image in Original Context; Close-up Thresholded Sampled 
Image 

 

D. Comparing with the Ground Truth Values 
Using the thresholded image and the 121 element grid, a 83-

by-1 matrix of binary values was created to represent the 
ground values in the 83 critical squares. The ordering of the 
elements was the same as in the ground truth matrix given, 
and bit-by-bit comparison of the results was performed. 

V. ADAPTIVE THRESHOLDING FOR GRAY SCALING 
Due to some of the various shadow gradients that are 

apparent in the camera phone images when global 
thresholding is applied to the images, if there is a shadow on 
the marker, it is deleted from the picture.  The solution to this 
problem was to use adaptive thresholding.  This method takes 
a window of a given size and finds the threshold that would be 
used for that window individually.  Then the window snakes 
around the image either incrementing or decrementing the 
threshold value based on the previous threshold value and the 
current threshold value of the window.  This method allows 
the visual code markers to be found more easily and 
consistently.  An example of the usefulness of this application 
is shown. 



Group 09 - EE 368, Digital Image Processing, Spring 2006 5 

 
Figure 6: Different Thresholding Methods 

VI. TESTING METHODS 
In order to test the algorithm, the training images provided 

on the class website were first used.  After successful 
detection of these images, the program was tested on 25 
additional images taken by the authors of this report.  These 
test images were much more difficult to detect than the images 
provided on the course website.  For instance, none of the 
provided code markers were upside down.  None of the 
markers were very small or very large compared to the image 
size.  Another consideration was whether the markers 
resembled other features that were present in the stationary 
points.  A couple of images from the testing stage are shown. 
The program is relatively successful in detecting only the real 
barcodes in these images. 
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Figure 7: Two Test Images and Thresholded Results 

VII. TIMING CONSIDERATIONS 
The time taken to process was not considered as critical as 

the accuracy of the detection.  Once the code of the plots and 
data used for error checking was removed, the time taken to 
process each image was reduced.  The final times for each 
image are shown in the plot below. 
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Figure 8: Timing Used for Training Images 

VIII. DISCUSSION 
 
The results from our finished program with the test images 

are excellent.  First of all, the score from the evaluate function 
is 1909, which is 100 percent correct. When tested on the 25 
additional images, the results were relatively satisfying, 
though not perfect. Specifically, there were some barcodes 
that were not on flat paper, so the assumption that the barcode 
was a parallelogram was not satisfied. Also, some of the 
barcode images were very small so the program did not detect 
them. 

IX. CONCLUSION 
 Finding the bar code markers in a random image is not a 

trivial task.  There are many considerations that must be 
accounted for in order to have a successful detection and 
reading of the marker.  Such considerations were how to 
convert the image to a black and white image to find the 
barcodes, how to find the barcodes, reading the barcodes, and 
checking to make sure it really is a barcode.  Implementing 
this algorithm required making sure that the program does not 
have any errors no matter what the input image is, as long as it 
is the correct format.  The algorithm was designed to not miss 
anything so there are many checks in place that do take up 
some CPU time, which may slow down the algorithm. 
However, these checks are essential in successful 
implementation of the program. 

APPENDIX: DIVISION OF LABOR 
Ryan Coutts: Boundary box reshaping for marker, 

integration, image quality enhancing, adaptive thresholding, 
creating additional test images, haralick corner detector, 
finding marker center. 

Jessica Faruque: Finding the pixel values from markers, 
image quality enhancing, integration and testing, checking if 
marker locations are actually images, bilinear interpolation. 

Bragi Sveinsson: Finding the marker locations. 
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