
EE368 Project: Visual Code Marker Detection
through Geometric Feature Recognition

George Yu, Perry Wang, Hattie Dong
Department of Electrical Engineering

Stanford University, Stanford, CA 94305
{georgeyu, peilien, dongh}@stanford.edu

I. INTRODUCTION

Visual code markers are developed as a human-
machine interactive tool [1] [2]. In this class project,
a code recognition program is developed to read
code markers. The requirements of the code recog-
nition program are high accuracy, speed and illu-
mination insensitivity. There can be more than one
visual code in the picture and the orientations of the
visual codes are not restricted. The code markers are
taken with cell-phone cameras.

Images from cell phones are poor due to several
reasons. The images typically have a soft focus,
caused by low quality lens, camera shake, and
color sensor interpolation. Motion blur is exacer-
bated by the slow lens’ poor light gathering abil-
ity. A low signal to noise ratio is the result of
cheap sensors, analog circuitry, and lack of in-
camera noise canceling hardware/software yielding
significant Gaussian-like additive noise. Inadequate
metering of the mobile phone camera results in
poorly exposed photos. In addition, the camera
sensor has low dynamic range preventing post-
processing algorithms to recover details, resulting
in low contrast in images. Hence, cell phone photos
are more challenging for the software to recognize.
The most significant challenge might be the view-
angle induced distortion.

At first glace, the visual code detection problem
resembles a license plate recognition problem. Vari-
ous techniques have been presented for recognizing
license plates based on edge detection and Hough
transform [3] [4] [5] [6] [7]. Others have proposed
hybrid methods combining color segmentation and
statistical techniques for more accurate segmenta-
tion [8] [9]. Hough transform is a popular solution

to image segmentation, as license plates typically
appear square and upright in the pictures. Further,
there is usually no more than one license plate per
picture. Most algorithms extract vertical edges and
find the most prominent vertical lines to isolate the
license plates. However, visual code detection is
not suitable for this technique. Visual code markers
do not have closed and clear boarders, and they
could have long edges in the data field as well.
Furthermore, the visual code markers typically ap-
pear in highly complex environments such that the
markers’ perimeters are not prominent compared to
its surroundings.

In this report, we present a visual code detection
algorithm that combines edge detection, geometric
feature recognition, and an error rejection metric to
improve reliability. It does not include the Hough
transform.

II. ALGORITHM DESCRIPTION

Two marker detection algorithms were consid-
ered. The first is template matching. The advantage
of template matching is its relative insensitivity to
noise and blur. However, a distortion-, orientation-
, and size-invariant template-matching algorithm is
complex and requires significant computing power.
An algorithm combining edge detection, geometric
feature recognition, and error rejection is more
realistic.

Our algorithm is divided into the following
subsections: preprocessing, edge detection, marker
search, marker sampling, and error correction.

A. Preprocessing

In this step, the image is prepared for edge de-
tection. Ample edge detection can be accomplished



without color information. Using color information
helps with filtering out the unwanted edges, but
the added performance is not significant enough to
warrant its usage.

Sharpening is a double-edged sword. On one
hand it de-blurs the images to a certain degree. On
the other hand it causes edges to be less smooth and
amplifies noise left over from the noise reduction.
Sharpening is turned off because our edge detection
algorithm does better without it, except for exces-
sively small markers.

Contrast adjustment is the most important step
because most thresholds become unreliable if the
images are not normalized. We tried histogram
equalization, adaptive histogram equalization, and
imadjust, which remaps intensity values such that
1% of data points are saturated at high and low
intensities. It is found that imadjust works the best.
For uneven lighting, our contrast adjustment mech-
anism is quite robust such that uneven lightening
needs not be corrected. For noise reduction, we use
Wiener filtering from Matlab.

B. Edge Detection

Visual code marker edges are then detected. We
use the Sobel operator to calculate the 2D gradient
magnitude of the image. We then apply imadjust
to the gradient magnitude image before converting
it to a binary image. This is effective in removing
the weaker edges and reduces runtime compared to
applying Matlab edge detection functions directly
to the grayscale image. The resulting binary image
contains thick edges. We use a combination of
morphological erosion and thinning to refine edges.
This result is labeled and passed on to the marker
detection logic. An example of the preprocessing
and edge detection steps is shown in Figure 1.

C. Marker Detection

Refer to Figure 2 for the component layout of
the visual code marker. The connected regions,
or objects of the edge binary image are tagged
using the bwlabel command. The properties of each
object are then stored for later use. The gist of
the marker search technique is successively locating
components of the visual code through restraints on
object properties.

Fig. 2. Component layout of visual code marker

The first step is to locate object R4. The con-
straints used are aspect ratio and object area. The
aspect ratio is defined as the ratio of major axis
length to minor axis length. Both axes lengths and
object area are stored in the regions’ properties. We
found through testing that an aspect ratio between
3.1 and 6 will work for all the images in the training
set. Further, the object area must be greater than
50. Once R4 is found, we look for the two possible
locations of object R3 at the two ends of R4. The
two possible sets of coordinates are calculated using
an estimation of the distance between R3 and R4.
The distance estimation is based on test markers
generated from the provided Matlab file. The two
points p1 and p2 have coordinates (p1x, p1y) and
(p2x, p2y). Program halts if R4 cannot be found.

To locate R3, we loop through all the objects a
second time. If an object graindata(y) satisfies the
following constraints, it is R3. The constraints on
graindata(y) are: 1) the distance between its center
and either p1 or p2 should be less than one fifth of
R3’s major axis length, 2) its equivalent diameter is
less than one fifth of R3’s major axis length, 3)
its aspect ratio is less than 2, and 4) its area is
greater than 10. Equivalent diameter is defined as
the diameter of the circle whose area is the same
as the object under study. These four conditions are
used to ensure that R3 is in the correct location



(a) (b)

(c) (d)
Fig. 1. Overlapping FOVs: a) Original image, b) Gradient magnitude image after imadjust and Sobel operation on a), c) Binary image
after performing imadjust and binarization on b), d) Edge image after multiple morphological thinning on c)

and of the correct shape. Once R3 is located, R4’s
center is denoted by a red star, and R3’s center is
denoted by a blue square. R3’s center is saved as
(Trdpx, Trdpy). Trdp stands for the third point. The
coordinates of the mirror image of R3 with respect
to R4’s center are then calculated to assist with
locating R5. They are (otherx, othery). Program
halts if R3 cannot be found.

To find R5, we again loop through all the objects.
Once an object graindata(z)’s properties satisfy con-
straints on aspect ratio, location and angle with
respect to R4, its orientation is checked. We must
ensure that R4 and R5 form an ”L” mirrored in
its vertical bar. Using coordinate transformation, R4

defines a new x-axis xr. From Figure 3, we can see
that the center of R5 in the new coordinate must
lie below yr. Further, the absolute value of R5’s
new x coordinate must be less than that of R4, so
that we don’t accidentally pick up a faraway object
resembling an R5. Once all these constraints are
satisfied, we denote its center using a yellow square.
We proceed to estimate the location of the ”L”s
bend. The two possible locations are (t1x, t1y) and
(t2x, t2y). If either of these points comes within a
threshold from (otherx, othery), we can be sure that
graindata(z) is indeed an R5. Once R5 is found,
”L”’s bend, the point Fth is denoted using a green
square. The location of R2 is estimated through (t3x,



Fig. 3. Coordinate transformation to ensure correct orientation of
visual code marker

t3y) and denoted using a green star. Program halts
if R5 cannot be found.

To find R2, we loop through all the objects once
more. If an object graindata(yy) satisfies constraints
on location, diameter, aspect ratio and filled area, it
is R2. We denote it using a red square. R2’s centroid
is stored in (Sndx, Sndy). Once R2 is found, we use
the points (Sndx, Sndy), (Trdpx, Trdpy) and (Fthx,
Fthy) to estimate the position of the top left hand
corner of the visual code marker, (t4x, t4y). (t4x,
t4y) is a reflection of the point Fth in the line formed
by the two points Snd and Fth. Program halts if R2
cannot be found.

To find R1, we loop through all the objects
using a set of constraints. The constraint of note
is that the distance threshold between (t4x, t4y)
and an object graindata(yyy) representing a possible
R1 must be adjusted to accommodate distortion
caused by photography. T4 is the fourth corner of
the parallelogram defined by the three points Trd,
Fth and Snd. The actual center of R1 has much
more flexibility in terms of location. However, if
the threshold distance is set too high, the program
will pick up R1-like objects from markers close
by. Hence the threshold distance presents a tradeoff
between accounting for distortion versus the ability
to separate cluttered markers. Our program favors
close markers more so than distorted markers, be-
cause we think that case is of higher probability.

Once R4 is located, its center is denoted by (Orgx,
Orgy) and drawn onto the plot using a cyan square.
Program exits if R1 cannot be found.

D. Sampling

After segmentation, the four corner points are
located. A bilinear sampling method, illustrated in
Figure 4, is implemented to determine the coordi-
nates of the target points in the 11 by 11 visual
code marker. This method is insensitive to the
distortion caused by different view angles. However,
this method cannot compensate for barrel distortion
caused by the lens. Five pixels, forming a cross, are
sampled for each desired point and the median value
of them is recorded. Choosing the median value
is a means of filtering out unwanted noise. After
sampling, 121 values are recorded and form an 11
by 11 picture. This picture has to be binarized before
we can extract 83 data bits. Since the lighting con-
dition is highly dynamic and noisy, we developed a
dynamic thresholding method to choose the correct
threshold value. First, a ”scale-to-extreme” method
is used to balance the gray value of the 11 by 11
picture. The equation that caculates the new gray
values is

graynew =
gray(x, y)−min(grayx=1:m,y=1:n)

max(grayx=1:m,y=1:n)−min(grayx=1:m,y=1:n)

Figure 4 shows the scale-to-extreme method and
the histogram. After gray level balancing, the his-
togram is constructed and used to determine the
threshold value. The threshold value is set at the
center of the ”valley” between the two peaks. The
thresholding accuracy is satisfying for the training
set provided for the project. This method achieved
100% accuracy for all 23 pictures. The final output
data is a realigned set of the wanted 83 data bits.
The sampling and thresholding method is illustrated
in Figure 5.

E. Error Rejection

We added a routine to reject bogus visual code
matches. This is done at two places. First, after
a marker is detected, we go through the non-
data samples and calculate the error rate of those
samples. If the error is larger than a threshold,
we reject the marker. Second, we use a route to



Fig. 4. Bilinear determination of sampling point coordinates

detect repeats. Two markers are considered repeats
if the corner diagonally across from the origin is the
same. Amongst the repeats, only the marker with
the lowest error rate is kept. This algorithm helps
removing the repeats created by distractions around
the origin.

III. RESULTS

Initially, there were several major issues with the
program. First, non-dynamic thresholding caused
many error bits after marker detection. Because
each picture was taken under a different lighting
condition, detected markers would have very dif-
ferent gray level histograms. Dynamic thresholding
is in essence a gray-level histogram normalization
procedure.

If a visual code maker has more than one plausi-
ble origin, more than one marker would be detected.
To reject erroneous repeats, a routine was imple-
mented that checks the bit error rates of all markers
sharing three vertices and picks the one with the
lowest error rate.

The markers have a high probability of being
distorted away from their original square shape.
The possible shapes are square, parallelogram, and
trapezoid. The program was improved to account
for all shapes.

The ”L” part of the visual code is of fixed
orientation. Initially, the orientation was not taken
into account, causing the program to pick up nearby
objects, forming erroneous visual markers. Adding
an additional constraint routine solved this problem.

The finalized algorithm described above was ap-
plied to the 23 pictures of the training set given.

Fig. 5. (a) Original gray level picture, (b) Picture after segmentation,
(c) Small picture composed of 11x11 sampled values, (d) Histogram
of the small picture, (e) Histogram of the small picture after scale-
to-extreme gray level balancing, (f) Restored binary picture of the
11x11 visual code marker

The result achieved is a perfect score of 1909. Two
examples are shown in Figure 6.

Further, the algorithm was applied to pictures
taken with our own cell phones. We tried to cover as
many possibilities as possible with regards to shape,
size and lighting. The algorithm was able to detect
all reasonable markers and decipher most data bits
correctly. Several examples are shown in Figures 7
and 8. Figure 8 shows that the algorithm can detect
a distorted marker that is trapezoidal and curved. In
both Figures, if a visual code marker is too small,
the algorithm cannot detect it. A possible solution is
to first enlarge the original picture before running
the algorithm. This is however at the expense of
computing power.

IV. WORK LOG

The work log of each group member is shown in
table I.



HD GY PW
literature survey 5 5 5
brain storming 5 5 5

preproccessing experimentation 3 3 8
marker detection 6 6 2
marker sampling 7 10 6

error rejection 1 1 4
create extra training set 1 2 2

debug 10 10 10
report 8 4 4

TABLE I

GROUP WORK LOG IN HOURS

V. CONCLUSIONS

In this report, we presented a visual code detec-
tion algorithm that combines edge detection, geo-
metric feature recognition, and an error rejection
metric to improve reliability. Edge detection was
based on gray level image adjustment, gradient gen-
eration and morphological operations. This edge de-
tection process was more robust than applying stan-
dard techniques directly to the original image. To
locate markers, the algorithm successively located
components of the visual code through restraints on
object properties. Bit sampling was achieved by first
using bilinear interpolation to calculate the coordi-
nates of the desired samples, followed by dynamic
thresholding to binarize the detected marker. Finally,
erroneous markers were rejected by comparing bit
error rates of repeats.

Applying the proposed algorithm to the given
training set achieved a perfect score of 1909. When
the algorithm was used on mobile phone pictures
made by the authors designed to cover extreme
cases, most markers were correctly detected and de-
ciphered. Only markers very small in size compared
to the overall picture were not successfully detected.

This algorithm can be used in commercial appli-
cations where visual code markers are of various
size, orientation, and brightness, and are embedded
in pictures of low image quality.

REFERENCES

[1] Rohs, M., Gfeller, B, “Using Camera-Equipped Mobile Phones
for Interacting with Real-World Objects,” Advances in Pervasive
Computing Proceedings, Vienna, Austria, Austrian Computer
Society (OCG), pp.265-271, 2004.

[2] Rohs, M, “Real-World Interaction with Camera-Phones,” at
2nd International Symposium on Ubiquitous Computing Systems
(UCS 2004), Tokyo, Japan, 2004.

[3] Bai Hongliang, Liu Changping, “A hybrid license plate extrac-
tion method based on edge statistics and morphology,” Pattern
Recognition, Volume 2, Page(s):831 - 834, 2004.

[4] Kamat, V., Ganesan, S., “An efficient implementation of the
Hough transform for detecting vehicle license plates using
DSP’S,” Real-Time Technology and Applications Symposium
Proceedings, pp.58 - 59, 1995.

[5] Yanamura, Y., Goto, M., Nishiyama, D., Soga, M., Nakatani,
H., Saji, H., “Extraction and tracking of the license plate using
Hough transform and voted block matching,” Intelligent Vehicles
Symposium Proceedings, pp.243 - 246, 2003.

[6] Mei Yu, Yong Deak Kim, “An approach to Korean license plate
recognition based on vertical edge matching,” IEEE International
Conference on Systems, Man, and Cybernetics Proceedings,
pp.2975 - 2980 vol.4, 2000.

[7] Tran Duc Duan, Duong Anh Duc, Tran Le Hong Du, “Combining
Hough transform and contour algorithm for detecting vehicles’
license-plates,” 2004 International Symposium on Intelligent
Multimedia, Video and Speech Processing Proceedings, pp.747
- 750, 2004.

[8] Jian-Feng Xu, Shao-Fa Li, Mian-Shui Yu, “Car license plate
extraction using color and edge information,” 2004 International
Conference on Machine Learning and Cybernetics Proceedings,
pp.3904 - 3907 vol.6, 2004.

[9] Syed, Y.A., Sarfraz, M, “Color edge enhancement based fuzzy
segmentation of license plates,” Ninth International Conference
on Information Visualisation Proceedings, pp.227 - 232, 2005.



(a) (b)
Fig. 6. Training pictures given by TA. Top: original picture. Middle: edge image. Bottom: restored markers. a) Training 5.jpg, b)
Training 12.jpg



(a) (b)
Fig. 7. Pictures made by authors. Top: original picture. Middle: edge image. Bottom: restored markers.



Fig. 8. Picture made by authors with trapezoidal and curved visual code marker. Top: original picture. Middle: edge image. Bottom: restored
markers.


