EE368 Project: Visual Code Marker Detection

Doe Hyun Yoon, Sang Hui Ahn

Abstract — A process for marker detection which involves
adaptive thresholding, region-modeling and mapping has a
challenge of recognizing marker in noisy space. We propose
accurate and computationally efficient algorithm in detecting any
number of marker within moderate tilt in camera image.

. INTRODUCTION

V isual code marker, taken with mobile phone camera, is
prone to have noise in pictures with its limited resolution.
A marker in a picture can also be arbitrarily rotated and tilted.
Hence the challenge is how to recognize the marker with
accuracy despite poor image quality, varying illumination,
markers’ size and orientation. Speed in obtaining data from a
marker is significant as well because a marker should quickly
load the information a user would like to obtain.

In this paper we discuss a systematic sequence of procedures
in detecting marker, followed by other attempts in solving the
problem. Fundamental flow of algorithm was mainly adopted
from [1].

Il. APPROACH

The flow chart used for detection algorithm is shown in
(Fig.1).
Here is the outline of m files with their functions in detail.

- detect_code.m : It is the main function that implements
the overall process and returns data and points of the
upper left corner element.

- adaptive_thresholding.m : It applies adaptive
thresholding technique and returns binary image
separated by threshold value.

- fit_ellipse.m : It fits the region into ellipse and provides
rotation angle, length of axis, center points. .

- draw_ellipse.m : It is used for debugging mode to plot
ellipse to be fit inside guide bars from ellipse
information.

- draw_feature.m : It draws and plots circles based on the
information of long guide bar with certain search range
for three corner elements.

- find_corner_stone.m : It finds a corner element from a
center point within certain range and returns the label of
region that contains the binary pixel.

Conversion into gray Image

!

Adaptive Thresholding

!

Classifiy regions into
bars / dots / others

l

Identify a set of bars
and corner elements

!

Projective mapping

!

Read data
- Location & bits

Fig. 1 Marker detection procedure flow chart

- mapping_image.m : It performs projective mapping
from code to image that returns 11 by 11 positions inside
the marker.

- read_data.m : It reads data from positions obtained
through projective mapping.

- bwlabel_mod.m : It upgrades speed as to examining
region of the same label. This is a modified version of m
file using bwlabel2 function inside bwlabel.m function.

- ycbcr_marker.m : It converts RGB image to YCbCr
image and classify the region into two according to the
similarity of its CbCr components with the marker.

- obtaining_ycbcr.m : It is a separate function from the
procedure that calculates the mean and standard
deviation of color components ChCr.

I1l. ALGORITHM

A. Gray scaling and adaptive thresholding

We first convert an RGB image to a grayscale image by using
rgb2gray Matlab function. Using this function turns out to be
less noisy than applying the coefficients in 1TU-standardized

http://www.go2pdf.com

created after adaptive thresholding.

formula. Then adaptive thresholding method described in [1]
adapted from [2] is employed to separate foreground from
background with nonuniform illumination. Constant threshold
value does not work in detecting markers because camera
images have varying brightness over the image.

Calculating a moving average of the last

= lwidth =1 480 = 60 pixels, the output binary image T(n)
8 8

with (t = 15) percent darkness is :
-1 i . €100 - tu
T(n)=1 |if <h(N) Ce—
P <h(n)" &85k
T(n) =0 otherwise
where p_is the current gray value, h(n) is the average of
g.(n) and g (n- width), and g_(n) is an approximate

average of the last s pixels at current point as in [1].
Thus the final binary image denotes our target of interest as 1
and 0 otherwise (Fig. 2).

B. Classifying regions into bars / dots / others

Guide bars (GB hereafter) and corner elements (CE
hereafter) are indicators of a marker, thus the aim is to obtain
position of two bars and three dots before reading data from a
marker.

1) Finding bars: Since the size of the marker varies, we made
use of the fact that two fixed GBs do not change in the ratio of its
width and height. After labeling the regions of which the
number of pixels satisfies above the threshold of 20 pixels, we
modeled those regions into ellipses. Regions that modeled into
ellipses are then good candidates for GBs. Fitting into ellipse
provides us with some merits in that we can measure the rotation
of the ellipse, and the ratio of width to height is retained the
same regardless of its angle of rotation. We adopted the code for
fitting into ellipse from [5]. The length of long axis, short axis,
and its center provides critical information in later processes
where calculation about relation between the bars and dots is
involved.

More specifically, within the regions identified with the same
label, we set the region as a bar of which the ratio of long axis to

Long GB

Fig. 3 Two markers are conceivable in each direction.

short axis lies in the range of 2.7 to 10. True ratio for long and
short guide bar is 7/1 and 5/1 respectively, but we allowed
margins considering the distortion from noise in an image.

2) Finding dots: With the region that is not bar, the potential
CEs are every dot that has the width to height ratio of
approximately 1/1. Since dots can be seen as a circle, without
the course of modeling into ellipse, the length of the region is
measured in horizontal and vertical direction and if two lengths
are within some tolerance it is defined as a dot.

C. Identifying a set of bars and corner elements

One marker is recognized with two GBs aligned
perpendicular to each other and three CEs: one CE that stretch
from two GBs respectively and the other one that lies on the
vertex determined by the parallelogram defined by three points-
two CEs and one point in the short GB. (Fig. 3)

First step is to start by finding a set of two bars perpendicular
to each other. Among the bars defined in the above (B),
assuming that this is the long GB, we search for short GB in two
directions. For a fixed long GB, two marker positions are
conceivable.(Fig 3) If a bar which lies within 90 degrees (with
some tolerance) is found, next step is to inspect if the potential
bar’s short axis and long axis are within the range compared to
long GB: in terms of short axis, a short GB’s should be in 60%
to 140% of the long GB’s short axis (true ratio is 1 because they
both occupy 1 pixel width); in terms of long axis, a short GB’s
width to height ratio should be within 3/7 to 6.9/7 ratio with long
GB. (cf. true ratio is 5/7 without margin)

With the information of long axis of two GBs, angle between
them and direction, we set the range so that each of three CEs lie
inside. We treated points in image plane as vectors from the
origin. CE2 can be found by extending a peak point w.r.t. center
point of the long axis to 5/3.5 with the direction specified: i.e.
CE 2isplin (Fig. 4). To detect CE3, we extended another peak
point as we did in pl, which is p2 in (Fig. 4). Then CE3 is
located by rotating p1l w.r.t p2 about the angle between bars.
CE1 is formed by rotated from p2 w.r.t pl about the angle
between bars deducted from 180 degrees. We set 5% margin to
the angle between bars to the outward direction since with

http://www.go2pdf.com

________________ S 2
CE3 —/Q

Short GB

Fig. 4 Finding three CEs in parallelogram.

MEW CE1

. Search raj g_e CE2

- Long GB
CE1l /
/

NEW CE3 —~’/, : shart GB

Fig. 5 lllustration of searching: center points of search are
set with New CE1 and New CE3 directing a bit outward. The
search is done following a spiral cord shape (increasing in
x direction first, then in y direction, decreasing in x
direction, then in y direction, and repeating this process
until hit with value 1).

varying tilting along the marker it is reasonable to find from
outside of the parallelogram. (Fig. 4)

In searching for the position of the CEs, we set search range
for each CE. Each search range was decided according to its
uncertainty: for CEL, it is 3 times the short axis of a GB, CE2
being 1 times the short axis of a GB, and CE3 being 1.2 times
the short axis of a GB. Since CE2 is directly obtained on the line
of its long axis of the long GB, it has the least uncertainty within
the range whereas CE1 is most distant from any other certain
points thus acquire the biggest search range.

The search is conducted in such a manner to follow spiral
curve trajectory. It investigates the binary pixel starting from the
center points (New CE1, CE2, New CE3) within its search
range until it hits the pixel value of 1 in the binary image. (Fig.
5)

A set of marker after searching result is shown in (Fig. 6): two
ellipses indicate long(green ellipse) and short(blue ellipse) GBs
and three circles indicate the range of plausible CEs.

Fig. 6 (From training_6 image) A set of marker with two
ellipses(green one is long GB and blue one is short GB)
and corresponding three CEs with its search range
symbolized as corresponding radius in each circle(in pink
circles).

D. Projective mapping

One needs at least 4 points to describe a rectangle. We
assumed that 11 points in any line of the marker is equally
spaced and the lines are affine. Thus idea of projective mapping
from code coordinate to image parallelogram is employed from
[4]. After three CEs search regions being met with binary value
1, calculating the center point, i.e the mean value, is done within
the region which includes that point.

With three vertices of the marker being found, it is better to
assign another indicator point as the center of the short GB than
calculating one of two peak points of the short GB (Fig.7).

By adjusting coefficients in projective mapping method in [4],
we obtain set of equations that map (u(m),v(n)) in known 11 by
11 marker coordinate into image coordinate, (x(m), y(n)),

a u(m) +bv(n) +c
g u(m) +hu(n) +1
d u(m) +ev(n) +f
g u(m) +hu(n) +1

x(m) =

y(n) =

with a to f coefficients:

é3 x Dx2u €0.8Dx1 Dx2u
g = detag a / det a a

sy Dy2g &.8Dy1 Dy2H

€.8Dx1 g xu €0.8Dxl Dx2u

o

etgo.sDyl avi “&spy1 Dy2l
a=x1-x0+gxl
b=x3-x0+hxl
c=x0

d=yl-y0+gyl
d=y3-y0+hyl
f=y0

& x=08x0-0.8x1+x2-x3
8 y=08y0-08yl+y2-y3

Dx1=x1- x2,
Dx2 = x3- x2,

Dyl=yl-y2
Dyl=y3-y2

Through this process, 11 by 11 points in a marker are mapped
into corresponding points in a marker regardless of its
orientation. More specifically, the mapping performs well for

http://www.go2pdf.com

CE1l CE2
(u0, v0) (ul,v1)
=(0,0) ‘—b --------------------------------- r =(1,0)
Long GB
__________________ [p2]

CE3

(_U?OVJE_)) Short GB ->

o (u2,v2) = (0.8,1)

Fig. 7 Criteria points (u, v) in code domain to be mapped
into parallelogram space.

Fig. 8 (From traiing_l.pg) This displays every 11 by 11
points in the image. Points inside the marker are mapped
into image, represented by pink diamond symbols.

the parallelogram that is gone through 3 types of transformation
— translation, scaling, and shearing.
The mapping result is shown in (Fig 8).

E. Read data- location and bits information

The data of a marker, consisting of 83 bits, are read from the
result of the 11 by 11 positions via projective mapping. The
positions from which we read data value are rounded off to the
nearest integer. This process stores data moving from top to
bottom, from left to right.

Origin is defined by center point of CEL.

IV. OTHER ATTEMPTS

After the initial implementation, we found that the processing
time is directly proportional to the number of connected regions
in binary image. Therefore, it is worthwhile to investigate some
pre-filtering methods to reduce and eliminate regions out of
interest. Such processing is expected to provide not only faster
operation, but also enhancement to the side of robustness if
non-marker regions can be successfully removed.

Those attempts are 1) median filter with added edge scheme
and 2) color filtering. Here are two prominent attempts and why
this is unhelpful to the algorithm described in I1I.

1) median filter with edge: Applying median filter to noisy
mobile picture seems to be reasonable approach because it

would reduce noise and preserve edges. The attempt is helpful
in reduction of computational effort since it reduces the number
of labels thus the process of identifying dots within the same
label takes little time compared to the one without median
filtering. Though it brings improvement in speed, however, it
failed to catch a small CE2 point in training_10 image.

To compensate for the loss in detection, we added edge of
grayscale image to binary image of inspection. As a result,
applying sobel or prewitt edge with median filter captures all
data in training images. Sobel and Prewitt were applied by using
Matlab function and these methods display less noise and are
faster than other edge operations such as Laplacian or Canny.

In terms of speed, however, edge detection process made the
implementation slower. As seen in (Table 1), comparing the
case 1 and case 3, this filtering process takes about 29.6sec in 12
training images whereas the code without filtering takes 10.6sec.
All images display increase of execution time, which is
especially most noticeable in training_10 image, it increased
from about 1.3sec to 10.3sec, which is about 10 times slower.
We can conclude that in certain picture, the performance is
largely hindered by filtering thus should be avoided. Since those
filtering procedure added no additional merit as a whole, it is
better to skip the filtering process.

2) Color filtering: Inspired by the idea of color segmentation
in face detection, it is expected that we can improve
performance by discriminating similar color tone of a marker, or
at least we can save time by skipping region with color far from
our target, black. Compared to the significance of color
segmentation methodology in face detection field, this case the
issue is rather suppressing color that is outside of our interest,
since the color of a marker is not rare like skin color.

Segmenting regions in YCbCr color space gives us merit
because it separates luminance factor from chrominance
information. From samples taken from 4 images, since Cb, Cr
components are distributed according to Gaussian, the points
whose color is similar to a marker have range specified by the
mean and standard deviation of Cb and Cr, i.e at position n in
YCbCr converted image by [3]:

T(n) =1 if Cb(n) I mean (Ch(marker)) + std (Cb(marker))
& Cr(n) I mean (Cr(marker)) % std (Cr(marker))
T(n) =0 otherwise

That is, if the pixel value scaled in YCbCr domain lie
between the range, the binary value is 1 and 0 otherwise. Thus
the bar shapes in (Fig. 9) which originally have red color are no
longer counted as candidates for bars.

Color filtering is then more tailored in order not to have any
influence on the marker’s pixel value. Thus the scaling factor is
usually 5 to 10. Since the color filter introduces point spread
noise, smoother using open and close morphological operations
is used to first remove small 1-regions and then remove small

http://www.go2pdf.com

Fig. 9 (From training_5.jpg) Red color has value 1; blue
color has value 0. The red and yellow color has been
filtered out by a marker’s CbCr sample range.

Fig. 10 Comparison of the images with or without color
filter: one through color filter(left), and no color filter(right).
This is the only case where color filtering increased speed
performance.

0-regions inside the marker generated by white color in the
marker.

However, the color filter does not improve the execution
speed if not hinders the detection performance. Comparison of
casel with case 4 suggests that it improved speed only in one
picture, training_12.jpg (Fig. 10). The reason is that the total
number of labels is reduced from 1235 to 888 by decreasing
noise in the binary image. However, in all the other cases
imperfect characteristic of color filter increased the number of
noise hence the number of labels increased; or remained the
same when there is no red tone present. Since the training_2 and
training_3 images have no red tone, use of color filter is only
time consuming. In both images, color filtering decreased the
speed about 0.52 sec.

Since there is approximately 50% increase in total execution
time when activating color filtering, and since regions with
non-marker color are sparse, there is no motive to put efforts
into achieving higher separability. Hence for general
application, it is better not to utilize color filtering process for
now.

V. RESULTS

The algorithms described above works accurately with all
twelve training images. (Fig. 11) shows one example of final
demonstration. Total 5 choices of algorithms involving main

TABLE I - EXECUTION TIME OF VISUAL CODE MARKER DETECTION

TRAINING EXECUTION TIME
IMAGES | "CASE1 | CASE2 | CASE3 | CASE4 | CASES
1 1.844 3.064 5.800 2.697 4.867
2 0.585 1.290 0.867 1.100 1.402
3 0.394 0.786 0.626 0.914 1.159
4 0.976 2.249 1118 1.437 1.607
5 0.800 1.190 1.100 1.162 1.504
6 0525 1.065 0.794 1.041 1310
7 0.734 1.184 1.038 1.155 1452
8 0512 0.722 2.014 1.044 1472
9 0.660 1.144 1.905 1.225 1574
10 1.278 1171 10.28 1.706 8.165
11 0.353 1.056 0.614 0.862 1122
12 1.961 3.698 3.414 1.583 1.850
Total 10622 | 18619 | 29579 | 15924 | 27.485
CASES FOR TABLE 1
Fast mode Median filter Color filter
with edge
CASE 1 0 X X
CASE 2 X X X
CASE 3 0 0 X
CASE 4 0 X 0
CASE 5 0 0 0

Table 1 Comparisons between methods

procedure and two kinds of attempts are tried as shown in
(Table 1). Since adding median filtering or color filtering
increased execution time, the main procedure will only be
activated to detect markers.

The main procedure can be further improved by modifying
labeling process, ‘[y x] = find(labeledimg == k);’ in the code,
since profile of the final code(described in 111) demonstrates that
63% of the time is consumed in finding regions with specific
label number. (cf. 11.4% consumed in adaptive thresholding,
4.8% consumed in the part where fitting ellipse is taking place.)
Modified version of labeling function scans every pixel that is
inside regions, and it stores (x,y) positions separately: for each
row, it contains certain label from starting column to ending
column. By this way, the execution time is reduced by 43%
which is reduced from 18.619 sec (case 2 in Table 1) to 10.622
sec (case 1 in Table 1).

In comparing images by images, some image like training_10
scores the highest variance, whereas for several images
(training_2, training_3, training_5, training_6, etc.) each takes
less than 2 sec on all cases. Reducing execution time on special
image like training_10 requires application-specific adjustment
to better recognize markers.

More pictures that are taken by digital camera were examined.

http://www.go2pdf.com

(1]
(2]

Fig. 11 (From training_10.jpg) The final result: three 3]
markers are detected. The upper most marker is the
smallest marker of all training images. 4]

(5]

Fig. 12 Experiment on otﬁer bictLlre : the 3™ image from the
left is not detected because the marker is tilted in a way
that projective mapping does not work.

The algorithm successfully detects markers of different markers
sizes (within recognizable size) and of moderate tilt. (Fig 12)
shows the result that failed in catching one marker which is
tilted to the extent where parabolic edges are to be seen. To
solve this issue, an algorithm needs to examine more parameters
in measuring the amount of tilting using higher order terms with
its warping model.

VI. CONCLUSION

Our detection algorithm performs with accuracy around 10.6
sec for the total of 12 given training images. Use of filtering in
our algorithm proved to be inefficient in execution time’s
perspective.

Further work can be done on detecting markers with tilting
which requires complex warping model.

APPENDIX

Division of work.

- Doe Hyun Yoon : Adaptive thresholding, Classifying
regions, locating GBs & CEs, Reading data, speed
optimization

- Sang Hui Ahn : Prefilter, Color filter, Fiding CEs,
Projective mapping, ellipse fitting, testing other images

REFERENCES

M. Rohs, Real-world interaction with camera-phones, 2nd International
Symposium on Ubiquitous Computing Systems (UCS 2004), 39-48.
Wellner P. Adaptive thresholding on the DigitalDesk. EuroPARC
Technical Report EPC-93-110, 1993.

S.L. Phung, A. Bouzerdoum, D. Chai, A Novel Skin Color Model In
YCbCr Color Space And Its Application To Human Face Detection,
International Conference on Image Processing 2002.

Paul S. Heckbert: Fundamentals of Texture Mapping and Image Warping.
Masters Thesis, Department of Electrical Engineering and Computer
Science, University of California, Berkeley, 1989

Ohad Gal, fit_ellipse.m file, Matlab Central [Online], Available:
http://www.mathworks.com/matlabcentral/files/3215/fit_ellipse.m

http://www.go2pdf.com
http://www.mathworks.com/matlabcentral/files/3215/fit_ellipse.m

