
 1

Abstract—This report discusses the algorithm we implemented to

identify and read data from visual code markers. In addition to

outlining the algorithm steps, we summarize the results our

algorithm achieved on a set of training images.

I. INTRODUCTION

he problem we address is as follows. Given a JPEG image

scattered with visual code markers (Fig. 1), we wish to

determine the coordinates of the center of the upper-left square

of each marker, as well as the bits encoded by each marker.

Our strategy was to identify possible guide bars through region

labeling followed by a series of checks on each pair of regions.

To keep the execution time as short as possible while limiting

false positives and negatives, we tried to strike a balance

between robustness and efficiency. After finding a pair of

guide bars, we identify the four corners of the code marker

using data extracted from the Radon transform of the guide bar

regions. Finally, we apply a projective transform to map the

four points, which form an arbitrary quadrilateral, to a square

in the conventional x-y grid. The data bits can then be read by

simple thresholding.

Figure 1: Input image containing three markers.

I. ALGORITHM DESCRIPTION

A. Filter/Thresholding

 We start by converting the image to grayscale by

retaining only the luminance of the original image. Color is

not an immediate concern since our first goal is to label the

dark regions in the image, among which will be the guide bars.

However, color information will be useful later for region

elimination.

 Next, we filter the grayscale image with a 9x9 Laplacian

of Gaussian filter with σ = 1.4 to sharpen edges. The filtered

image is then thresholded near its mean (which is roughly 0),

giving us an image of all the prominent dark regions, such as

that shown in Fig. 2a.

B. Region Labeling and Region Removal

 The next step is to detect all of the dark regions in the

image. We use 4-connectivity rather than 8-connectivity

because we expect all pixels in a guide bar to be well

connected to others. Next, before entering our pairwise

guidebar search, we attempt to remove as many regions as

possible that clearly do not fit the characteristics of a guide

bar. The pairwise search will consume almost all of the

execution time of our program and will have O(n
2
) complexity,

so removing roughly 29% of the regions, for example, would

make our algorithm twice as fast. We choose to eliminate

based on size any region smaller than 50 pixels or larger than

8000 pixels. The lower bound is based on the size of guide

bars in the 12 training images that we were provided, in which

we found no guide bar regions containing less than 100 pixels.

The upper bound is based on the largest possible code marker

that would fit in a 640x480 image, which would contain

roughly 480x480 pixels. Its short guide bar could consume no

more than 5/121 of these pixels, leaving 8000 as a reasonable

upper bound.

 The next characteristic of guide bars that we take

advantage of is the fact that they are black regions on white

backgrounds. Looking now at the red, green, and blue color

components of the pixels in the region, we remove a region

from consideration if the mean squared distance of its color

components from the average of its color components exceeds

a threshold. This works since we expect the RGB components

of a black pixel to be very near each other.

Visual Code Marker Detection
Daniel Blatnik, Abheek Banerjee EE 368, Spring 2006

T

 2

Figure 2: Demonstration of color removal, for training image

#5. Thirty regions were rejected on the basis of color

(bottom) that we could not reject on the basis of size (top).

This reduced the total number of regions from 149 to 119, for

an expected reduction in execution time of 1-

(119*117/2)/(149*147/2) = 36%.

C. Iterative Guide Bar Search

 After filtering, thresholding, and region deletion, we are

now ready to search for pairs of guide bars. This involves

iterating over each pair of the remaining regions, putting each

pair through a series of tests to eliminate any false positives.

To eliminate the most obvious non-guidebar regions from

consideration with the least computational expense, we start by

checking the ratio of the number of pixels in the larger region

to the number of pixels in the smaller regions. In a code

marker’s original grid, the long guide bar consumes seven

squares while the short guide bar consumes five squares.

Based on their lengths, we expect a ratio of the larger bar over

the smaller bar of about 1.4. If the ratio lies too far away from

this value, then we can eliminate the pair from consideration.

 We also reject from consideration any two regions

that lie too far apart from one another. We use two measures

of closeness: midpoint-to-midpoint distance, and the distance

between the closest pair of points from each region.

 The next characteristic of guide bars we use is that each

bar should possess a single dominant edge orientation angle.

Regions containing a varied mix of edge orientation angles,

can thus be eliminated. To determine the approximate

distribution of edge orientation angles in a region, we take a

rectangular subset that closely surrounds the region from the

thresholded image. We perform edge detection on this black

and white subset using the Canny detector. We chose this

edge detector because it is computationally fast, and because

we are not worried about edge connectivity; we only need to

know the rough distribution of edge orientation angles in a

connected region. To estimate this distribution, we apply the

Radon transform to the edge-detected subset, thus giving the

strength of lines in the subset at each (ρ, θ). Because we again

are only interested in the dominant angle, so we sum the

Radon matrix over all ρ for each θ, giving a histogram of edge

strength vs. θ. In a true guide bar, the peak angle in this

histogram will have much more energy than the rest of the

spectrum of angles. A region is eliminated if its distribution of

edge strength contains too much energy at angles other than

the peak angle. Examples of this histogram that suggest both

rejection and non-rejection are shown in Figure 3.

Figure 3: Demonstration of our edge orientation angle

criterion. The top image corresponds to the letter ‘O’ in the

word ‘OFF’ on the left of Figure 2, which we did not reject on

the basis of region size, but were able to reject because it

contained too much energy at edge orientation angles other

than the peak angle. The bottom image corresponds to a long

guide bar. Note the strong peak.

 Furthermore, a pair of regions is eliminated if the

difference between the two peak angles lies too far away from

90 degrees. We do not enforce a particularly strict threshold

here either, allowing any pair of regions whose dominant

angles are 60 to 120 degrees apart to pass through. This

tolerance is necessary because depending on the camera

perspective, a square-shaped code marker will be transformed

to an arbitrary quadrilateral with two or more non-right angles.

 Our final check measures how rectangular each region is.

This is accomplished by rotating the region-labeled image by

the peak angle determined as above, and then identifying the

smallest possible rectangle in the natural grid of the rotated

image that fully contains that same region. If the region is a

 3

true guide bar, it has now been rotated back to its natural

orientation, and should occupy most (at least two thirds) of the

rectangle. If it occupies less, it presumably is too convoluted

in shape to be a guide bar.

D. Orientation Identification and Corner Search

 The lower right corner of the code marker always lies on

one of the four edges of the smallest possible rectangular

subset fully containing the shorter guide bar. It also lies on

one of the four edges of the smallest possible rectangular

subset fully containing both guide bars, unless the marker was

greatly skewed due to the camera perspective. We identify the

lower right corner by essentially looking for the point in the

smaller guide bar region that lies on an edge of both the

smaller marker’s surrounding rectangular subset, and the

rectangular subset surrounding both guide bars.

 Knowing the coordinates of the lower right corner, we

traverse to the other three corners as follows. We use the

length and orientation of the long guide bar to estimate the

distance and direction that we must travel, starting from the

lower right corner, to get to the upper right corner of the code

marker. Similarly, we use the length and orientation of the

short guide bar to estimate the distance and direction that we

must travel to get to the lower left corner. Addition of these

two vectors gives the coordinates of the upper left corner,

assuming that perspective skew has transformed the shape of

the marker to a parallelogram.

 This traversal gives rough estimates of the corner

locations. Because code markers have isolated black squares

at their upper left, upper right, and lower left corners, these

estimates can be made more accurate by taking a 10x10 subset

around the estimated corner location and choosing the location

from that subset with the minimum pixel value, which

generally should correspond to the center of a black square.

E. Mapping Back to a Square

 Once we have the coordinates of the four corners of a

marker, the next step is to undo any transformation of

coordinates by mapping all the points from the found

quadrilateral to a square. To do this, we need a set of

equations that describes a projective transformation from one

plane to another:

Next, since we have four sets of original points (the warped

corners in our perspective image) and four sets of destination

points (the unwarped corners in our square image), we have 8

equations and 8 unknowns—solvable as a system of equations

using matrices. Once we have the 8 unknowns that govern the

transformation back to a flat plane, we apply it to every set of

coordinates in the region surrounding the projected code

marker. Each of these pixels is mapped back to a 110x110

square as seen below, with each 10x10-pixel box

corresponding to one square in the code marker’s natural grid.

Notice in the unwarped image, there is some distortion in the

form of a grid, which is due to the fact that the inverse

transform is not one-to-one because of roundoff error.

 However, this is acceptable distortion because it occurs on

very few pixels and has virtually no effect on the bit

extraction.

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

110

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10

11

Figure 4: Results of mapping the rightmost code marker (top)

back to a square in its natural grid (center) and thresholding

(bottom).

 4

F. Reading Data Bits

 Now that we have performed a transformation back to

square dimensions and a level plane, bit extraction is fairly

straightforward. Once we have mapped the pixels back to a

110x110 square, we take the average value of each 10x10 box

and compare it to the threshold given by Otsu’s method to

determine whether to detect a 0 (white) or a 1 (black) for the

corresponding data bit. We do not check the parity bits,

because we have already used the guide bars and the corner

squares, and would have ended the current iteration of the

guide bar search already if problems had been found in

identifying these.

II. PERFORMANCE RESULTS

 After running our visual code marker dectection

algorithm on the 12 training images, we observe positive

results. Our algorithm correctly extracts 1904 out of a

possible 1909 total bits (23 total code markers x 83 bits per

code marker). This comes out to roughly 0.2 missed bits per

code marker. Once we have found all true code markers, the

accuracy of our algorithm depends primarily on how

accurately we can estimate the coordinates of the four corners.

The corners are most easily detected in images without any

perspective or skewness, in which case we get near perfect bit

extraction. The error of our transformation coefficients

increases as the perspective of the code marker increases,

increasing the bit error of our algorithm. The following are the

number of missed bits for each of the 12 training images:

 As far as runtime is concerned, our algorithm appears to

be well within the one minute upper limit as defined in the

project instructions. Most of the images--the ones containing a

moderate amount of mid-sized dark regions--take on the order

of 8-20 seconds. As we increase the number of black regions

about the size of a typical guide bar, such as text, the

computation time increases as well. The following are

processing times for the 12 training images:

 In addition to testing our algorithm on the original 12

training images, we created 3 more images per original,

rotating each one 90, 180, and 270 degrees. This was helpful

in the debugging process to ensure that we tested as many

guide bar orientations as possible. After some code

modification, the algorithm was successful in decoding the 36

rotated images as well.

Training

Image

Number

Number

of

Markers

Execution Time

(seconds)

Total Bits

Missed

1 1 7.4705 0

2 2 17.1778 0

3 3 25.7949 2

4 1 14.1999 0

5 3 19.6949 0

6 1 5.9940 0

7 2 16.8511 0

8 1 10.0729 0

9 3 17.9349 0

10 3 10.9590 0

11 1 47.9530 3

12 2 4.7052 0

Table 1: Performance results for the training image set.

III. CONCLUSION

Overall, we feel that our algorithm performs the task of

visual code marker bit detection both accurately and

efficiently. Probably one of the more time consuming and

subjective components of the algorithm was finding matching

sets of guide bars. To start, we attempted to eliminate false

positives using fairly stringent methods, which we felt would

be necessary to find all of the code markers in the time

allotted. However, soon we realized that using only one or

two checks was insufficient to catch all of the correct guide

bars or to safely eliminate the false positives. To correct this,

we introduced more criteria, each taking advantage of a

different property of true guide bars. However, we were also

especially careful not to make the thresholds too lenient, which

would increase computation time too much. This allowed us to

safely pinpoint the location of each code marker while staying

under the time constraint. After finishing the rest of the code,

we realized that once we found a correct code marker, the time

until bit extraction was only about 2 seconds. This allowed us

to use the vast majority of the time on region detection.

REFERENCES

[1] R. Fisher, S. Perkins, A. Walker and E. Wolfart. “Laplacian of

Gaussian”[Online]. Available:

http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm

 5

Appendix: Work Distribution

Initial filtering -- Daniel

Small region removal – Daniel and Abheek

Region removal based on orientation angle – Daniel and Abheek

Mapping arbitrary quadrilateral to square -- Daniel

Identification of corner coordinates -- Abheek

Reading bits -- Abheek

