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Abstract—This report discusses the algorithm we implemented to 

identify and read data from visual code markers.  In addition to 

outlining the algorithm steps, we summarize the results our 

algorithm achieved on a set of training images. 

 

I. INTRODUCTION 

he problem we address is as follows. Given a JPEG image 

scattered with visual code markers (Fig. 1), we wish to 

determine the coordinates of the center of the upper-left square 

of each marker, as well as the bits encoded by each marker.  

Our strategy was to identify possible guide bars through region 

labeling followed by a series of checks on each pair of regions.  

To keep the execution time as short as possible while limiting 

false positives and negatives, we tried to strike a balance 

between robustness and efficiency.  After finding a pair of 

guide bars, we identify the four corners of the code marker 

using data extracted from the Radon transform of the guide bar 

regions.  Finally, we apply a projective transform to map the 

four points, which form an arbitrary quadrilateral, to a square 

in the conventional x-y grid.  The data bits can then be read by 

simple thresholding. 

 

 
Figure 1: Input image containing three markers.  

I. ALGORITHM DESCRIPTION 

A.  Filter/Thresholding 

        We start by converting the image to grayscale by 

retaining only the luminance of the original image.  Color is 

not an immediate concern since our first goal is to label the 

 
 

dark regions in the image, among which will be the guide bars.  

However, color information will be useful later for region 

elimination. 

        Next, we filter the grayscale image with a 9x9 Laplacian 

of Gaussian filter with σ = 1.4 to sharpen edges.  The filtered 

image is then thresholded near its mean (which is roughly 0), 

giving us an image of all the prominent dark regions, such as 

that shown in Fig. 2a. 

 

B.     Region Labeling and Region Removal 

 

        The next step is to detect all of the dark regions in the 

image.  We use 4-connectivity rather than 8-connectivity 

because we expect all pixels in a guide bar to be well 

connected to others.  Next, before entering our pairwise 

guidebar search, we attempt to remove as many regions as 

possible that clearly do not fit the characteristics of a guide 

bar.  The pairwise search will consume almost all of the 

execution time of our program and will have O(n
2
) complexity, 

so removing roughly 29% of the regions, for example, would 

make our algorithm twice as fast.   We choose to eliminate 

based on size any region smaller than 50 pixels or larger than 

8000 pixels.  The lower bound is based on the size of guide 

bars in the 12 training images that we were provided, in which 

we found no guide bar regions containing less than 100 pixels.  

The upper bound is based on the largest possible code marker 

that would fit in a 640x480 image, which would contain 

roughly 480x480 pixels.  Its short guide bar could consume no 

more than 5/121 of these pixels, leaving 8000 as a reasonable 

upper bound.          

        The next characteristic of guide bars that we take 

advantage of is the fact that they are black regions on white 

backgrounds.  Looking now at the red, green, and blue color 

components of the pixels in the region, we remove a region 

from consideration if the mean squared distance of its color 

components from the average of its color components exceeds 

a threshold.  This works since we expect the RGB components 

of a black pixel to be very near each other. 
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Figure 2: Demonstration of color removal, for training image 

#5.  Thirty regions were rejected on the basis of color 

(bottom) that we could not reject on the basis of size (top).  

This reduced the total number of regions from 149 to 119, for 

an expected reduction in execution time of 1-

(119*117/2)/(149*147/2) = 36%. 

 

C.     Iterative Guide Bar Search 

 

        After filtering, thresholding, and region deletion, we are 

now ready to search for pairs of guide bars.  This involves 

iterating over each pair of the remaining regions, putting each 

pair through a series of tests to eliminate any false positives.  

To eliminate the most obvious non-guidebar regions from 

consideration with the least computational expense, we start by 

checking the ratio of the number of pixels in the larger region 

to the number of pixels in the smaller regions.  In a code 

marker’s original grid, the long guide bar consumes seven 

squares while the short guide bar consumes five squares.  

Based on their lengths, we expect a ratio of the larger bar over 

the smaller bar of about 1.4.  If the ratio lies too far away from 

this value, then we can eliminate the pair from consideration. 

        We also reject from consideration any two regions 

that lie too far apart from one another.  We use two measures 

of closeness: midpoint-to-midpoint distance, and the distance 

between the closest pair of points from each region. 

        The next characteristic of guide bars we use is that each 

bar should possess a single dominant edge orientation angle.  

Regions containing a varied mix of edge orientation angles, 

can thus be eliminated.  To determine the approximate 

distribution of  edge orientation angles in a region, we take a 

rectangular subset that closely surrounds the region from the 

thresholded image.  We perform edge detection on this black 

and white subset using the Canny detector.  We chose this 

edge detector because it is computationally fast, and because 

we are not worried about edge connectivity; we only need to 

know the rough distribution of edge orientation angles in a 

connected region.  To estimate this distribution, we apply the 

Radon transform to the edge-detected subset, thus giving the 

strength of lines in the subset at each (ρ, θ).  Because we again 

are only interested in the dominant angle, so we sum the 

Radon matrix over all ρ for each θ, giving a histogram of edge 

strength vs. θ.  In a true guide bar, the peak angle in this 

histogram will have much more energy than the rest of the 

spectrum of angles.  A region is eliminated if its distribution of 

edge strength contains too much energy at angles other than 

the peak angle.  Examples of this histogram that suggest both 

rejection and non-rejection are shown in Figure 3.   

 

 

 
Figure 3: Demonstration of our edge orientation angle 

criterion.  The top image corresponds to the letter ‘O’ in the 

word ‘OFF’ on the left of Figure 2, which we did not reject on 

the basis of region size, but were able to reject because it 

contained too much energy at edge orientation angles other 

than the peak angle.  The bottom image corresponds to a long 

guide bar.  Note the strong peak. 

 

        Furthermore, a pair of regions is eliminated if the 

difference between the two peak angles lies too far away from 

90 degrees.  We do not enforce a particularly strict threshold 

here either, allowing any pair of regions whose dominant 

angles are 60 to 120 degrees apart to pass through.  This 

tolerance is necessary because depending on the camera 

perspective, a square-shaped code marker will be transformed 

to an arbitrary quadrilateral with two or more non-right angles. 

  

        Our final check measures how rectangular each region is.  

This is accomplished by rotating the region-labeled image by 

the peak angle determined as above, and then identifying the 

smallest possible rectangle in the natural grid of the rotated 

image that fully contains that same region.  If the region is a 
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true guide bar, it has now been rotated back to its natural 

orientation, and should occupy most (at least two thirds) of the 

rectangle.  If it occupies less, it presumably is too convoluted 

in shape to be a guide bar. 

 

D.      Orientation Identification and Corner Search 

        The lower right corner of the code marker always lies on 

one of the four edges of the smallest possible rectangular 

subset fully containing the shorter guide bar.  It also lies on 

one of the four edges of the smallest possible rectangular 

subset fully containing both guide bars, unless the marker was 

greatly skewed due to the camera perspective.  We identify the 

lower right corner by essentially looking for the point in the 

smaller guide bar region that lies on an edge of both the 

smaller marker’s surrounding rectangular subset, and the 

rectangular subset surrounding both guide bars. 

        Knowing the coordinates of the lower right corner, we 

traverse to the other three corners as follows.  We use the 

length and orientation of the long guide bar to estimate the 

distance and direction that we must travel, starting from the 

lower right corner, to get to the upper right corner of the code 

marker.  Similarly, we use the length and orientation of the 

short guide bar to estimate the distance and direction that we 

must travel to get to the lower left corner.  Addition of these 

two vectors gives the coordinates of the upper left corner, 

assuming that perspective skew has transformed the shape of 

the marker to a parallelogram. 

        This traversal gives rough estimates of the corner 

locations.  Because code markers have isolated black squares 

at their upper left, upper right, and lower left corners, these 

estimates can be made more accurate by taking a 10x10 subset 

around the estimated corner location and choosing the location 

from that subset with the minimum pixel value, which 

generally should correspond to the center of a black square. 

 

E.      Mapping Back to a Square 

 

        Once we have the coordinates of the four corners of a 

marker, the next step is to undo any transformation of 

coordinates by mapping all the points from the found 

quadrilateral to a square.  To do this, we need a set of 

equations that describes a projective transformation from one 

plane to another: 

 

 
 

Next, since we have four sets of original points (the warped 

corners in our perspective image) and four sets of destination 

points (the unwarped corners in our square image), we have 8 

equations and 8 unknowns—solvable as a system of equations 

using matrices.  Once we have the 8 unknowns that govern the 

transformation back to a flat plane, we apply it to every set of 

coordinates in the region surrounding the projected code 

marker.  Each of these pixels is mapped back to a 110x110 

square as seen below, with each 10x10-pixel box 

corresponding to one square in the code marker’s natural grid. 

Notice in the unwarped image, there is some distortion in the 

form of a grid, which is due to the fact that the inverse 

transform is not one-to-one because of roundoff error. 

 However, this is acceptable distortion because it occurs on 

very few pixels and has virtually no effect on the bit 

extraction. 
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Figure 4: Results of mapping the rightmost code marker (top) 

back to a square in its natural grid (center) and thresholding 

(bottom). 
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F.  Reading Data Bits 

  Now that we have performed a transformation back to 

square dimensions and a level plane, bit extraction is fairly 

straightforward.  Once we have mapped the pixels back to a 

110x110 square, we take the average value of each 10x10 box 

and compare it to the threshold given by Otsu’s method to 

determine whether to detect a 0 (white) or a 1 (black) for the 

corresponding data bit.  We do not check the parity bits, 

because we have already used the guide bars and the corner 

squares, and would have ended the current iteration of the 

guide bar search already if problems had been found in 

identifying these. 

 

II. PERFORMANCE RESULTS 

 

        After running our visual code marker dectection 

algorithm on the 12 training images, we observe positive 

results.  Our algorithm correctly extracts 1904 out of a 

possible 1909 total bits (23 total code markers x 83 bits per 

code marker).  This comes out to roughly 0.2 missed bits per 

code marker.  Once we have found all true code markers, the 

accuracy of our algorithm depends primarily on how 

accurately we can estimate the coordinates of the four corners. 

The corners are most easily detected in images without any 

perspective or skewness, in which case we get near perfect bit 

extraction.  The error of our transformation coefficients 

increases as the perspective of the code marker increases,  

increasing the bit error of our algorithm.  The following are the 

number of missed bits for each of the 12 training images: 

 

        As far as runtime is concerned, our algorithm appears to 

be well within the one minute upper limit as defined in the 

project instructions.  Most of the images--the ones containing a 

moderate amount of mid-sized dark regions--take on the order 

of 8-20 seconds.  As we increase the number of black regions 

about the size of a typical guide bar, such as text, the 

computation time increases as well.  The following are 

processing times for the 12 training images: 

        In addition to testing our algorithm on the original 12 

training images, we created 3 more images per original, 

rotating each one 90, 180, and 270 degrees.  This was helpful 

in the debugging process to ensure that we tested as many 

guide bar orientations as possible.  After some code 

modification, the algorithm was successful in decoding the 36 

rotated images as well. 

 

Training 

Image 

Number 

Number 

of 

Markers 

Execution Time 

(seconds) 

Total Bits 

Missed 

1 1 7.4705    0 

2 2 17.1778    0 

3 3 25.7949    2 

4 1 14.1999    0 

5 3 19.6949     0 

6 1 5.9940    0 

7 2 16.8511    0 

8 1 10.0729 0 

9 3 17.9349    0 

10 3 10.9590    0 

11 1 47.9530     3 

12 2 4.7052 0 

Table 1: Performance results for the training image set. 

 

  

III. CONCLUSION 

Overall, we feel that our algorithm performs the task of 

visual code marker bit detection both accurately and 

efficiently.  Probably one of the more time consuming and 

subjective components of the algorithm was finding matching 

sets of guide bars.  To start, we attempted to eliminate false 

positives using fairly stringent methods, which we felt would 

be necessary to find all of the code markers in the time 

allotted.  However, soon we realized that using only one or 

two checks was insufficient to catch all of the correct guide 

bars or to safely eliminate the false positives.  To correct this, 

we introduced more criteria, each taking advantage of a 

different property of true guide bars.  However, we were also 

especially careful not to make the thresholds too lenient, which 

would increase computation time too much. This allowed us to 

safely pinpoint the location of each code marker while staying 

under the time constraint.  After finishing the rest of the code, 

we realized that once we found a correct code marker, the time 

until bit extraction was only about 2 seconds.  This allowed us 

to use the vast majority of the time on region detection. 
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Appendix: Work Distribution 

 
 

Initial filtering -- Daniel 

 

Small region removal – Daniel and Abheek 

 

Region removal based on orientation angle – Daniel and Abheek 

 

Mapping arbitrary quadrilateral to square -- Daniel 

 

Identification of corner coordinates -- Abheek 

 

Reading bits -- Abheek 


