
 1

I. INTRODUCTION
 HE purpose of this project is to detect and read visual
code markers in color images taken by camera phones.

We are given a set of twelve training images, each containing
up to three code markers with arbitrary location and
orientation. Each code marker is an 11 x 11 array of black and
white elements, 83 of which represent variable data bits. The
remaining 38 elements are fixed and consist of three corner
elements and two guide bars. Figure 1 shows a code marker
with standard orientation, where the two guide bars are in the
lower right corner.

Figure 1. Code marker in standard orientation.

 Our task is to determine the center pixel of the upper left

corner element for each code marker and extract the 83 bits of
data encoded. This task is complicated by several factors.
First, each code marker element can span multiple pixels and
have variable size, depending on its relative location within
the image, and the angle, distance, and perspective from which
the image was photographed. Second, each code marker can
be rotated and distorted by unknown transformations, which
must be reverse-engineered from the given image. Third, the
contrast and visual quality of camera phone images can be
quite low, thus making it difficult to apply simple color
segmentation to distinguish black and white elements. Fourth,
code markers can be interspersed among background objects
of similar color, size, and shape, which make it difficult to
detect genuine code marker regions. Finally, our processing
time is restricted to no more than one minute per image.

In this project, we develop a completely original, robust
system that combines edge detection, morphological
processing, region labeling, object recognition, quadrant
classification, and projective transformation, to accurately
detect and read visual code markers. A system flow chart is
given in Figure 2. During development, we tested and
rejected many other techniques, including color segmentation,
template matching and area correlation, matched filtering, and
local statistical analysis in both spatial and frequency domains.

Our current system achieves 100% accuracy on all twelve
training images, as well as an augmented set of 36 additional
images obtained from 90º rotations of the original set. The
system requires no more than 10 seconds per image on a 3.6
GHz machine. Sections II through VI describe the steps in our
algorithm. Section VII provides performance results and
runtime measurements. Section VIII summarizes the project
and our contributions.

Figure 2. System flow chart.

II. EDGE DETECTION AND MORPHOLOGICAL PROCESSING

The first step in our algorithm consists of edge detection
followed by edge refinement through morphological
processing. This step extracts object boundaries, which are
the relevant features needed to detect code markers.

Visual Code Marker Detection
May Zhou, Kanako Hayashi, Yuki Konda

T

 2

A. Edge Detection
To apply edge detection, we first convert the color RGB

image to grayscale using the formula

BGRY 1140.05870.02989.0 ++= (1)

where Y is between 0 and 255.

We then apply two different edge detectors to target the two

types of subregions that are fixed in each code marker: guide
bars and corner elements. Sobel edge detection is used to
enhance straight lines, which are characteristic of guide bars.
Canny edge detection is used to preserve small round regions,
which are characteristic of corner elements. Both operators
are applied to the grayscale image to produce two separate
edge images, which are processed in parallel in the next step
of our algorithm.

The Sobel and Canny operators were carefully selected for
their edge detection properties. Sobel favors the well-defined
linear edges of guide bars but disrupts small closed contours
and overlooks weak edges. Canny preserves small closed
contours for corner elements, even when edges are weakened
by poor contrast, but tends to be overly sensitive and produce
too many spurious edges. These properties can be explained
as follows. Sobel uses two filter kernels, one for horizontal
gradients and another for vertical gradients, which together
pick out linear and piecewise linear edges:

 ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

101
202
101

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −−−

121
000
121

Canny finds edges by looking for the local maxima of the

gradient calculated using the derivative of a Gaussian filter.
Two thresholds are used to detect strong and weak edges,
resulting in a higher incidence of spurious edges. Figures 4-6
compare Sobel and Canny results for training image 1, along
with results from three other edge detection operators that
were tested and rejected. Roberts was rejected for producing
too many small broken edges, Prewitt for its weaker gradients
and relative inferiority to Sobel, and Laplacian of Gaussian for
its oversensitivity and enlargement of contours.

Figure 3. Original image.

Figure 4. Sobel edge detection.

Figure 5. Canny edge detection.

 3

(a)

(b)

(c)

Figure 6. Rejected edge detection schemes. (a) Roberts, (b) Prewitt,
(c) Laplacian of Gaussian.

(a)

(b)

(c)

Figure 7. Morphological processing. (a) Removal of isolated
pixels. (b) Dilation. (c) Thinning.

 4

B. Morphological Processing
Three morphological operations are applied to both edge

images to smooth and refine detected edges. First, isolated
pixels are removed by eroding with the structuring element

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=Π

000
010
000

1

Next, the image is dilated with

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=Π

111
111
111

2

to smooth out edge discontinuities. This results in a
thickening of all edges. To compensate, the final operation
thins edges to lines of minimal width. The thinning operation
preserves the Euler number, which is equal to the number of
objects in the region minus the number of holes in those
objects. Figure 7 shows the result after each morphological
operation for training image 1.

III. OBJECT RECOGNITION

Object recognition is performed on the two edge images to
detect guide bars and corner elements. Regions in each image
are labeled using 8-connected neighborhoods. Figure 8 shows
the region-labeled Sobel image for training image 8. Region
labels are differentiated by color.

Figure 8. Region labeling.

Each region is then modeled by an ellipse with the same

normalized second central moments. The attributes of these
ellipses are thresholded to identify the correct regions

corresponding to guide bar pairs in the Sobel image and
candidate corner regions in the Canny image. Both individual
and pairwise region attributes are thresholded for guide bar
pair recognition, whereas only individual region attributes are
used for candidate corner recognition. All threshold values
are empirically determined from the given training images and
are listed in Table I.

A. Guide Bar Pairs
To recognize and extract guide bar pairs, we use two sets of

thresholds on the Sobel image. The first set acts on individual
region attributes: major axis length (M), minor axis length
(m), area (A), and eccentricity (E) for each corresponding
ellipse.

 majmaj M 21 γγ <<
 min

2
min
1 γγ << m

 α>A
 ε>E

The second set acts on pairwise region attributes: distance

between centroids (D) and difference in orientation (θ)
between two adjacent regions.

 21 δδ << D
 βθ <

The final result is a precise determination of the exact

regions that correspond to all guide bar pairs in the image.
Figure 9 illustrates the step-by-step elimination of extraneous
regions using the two sets of thresholds for training image 9.

TABLE I
THRESHOLD VALUES FOR OBJECT RECOGNITION

γ1
maj 30

γ2
maj 90

γ1
maj 6

γ2
maj 20

α 85

ε 0.9

δ1 55

δ2 22

β 28

 5

(a)

(b)

(c)

(d)

(e)

Figure 9. Extraction of guide bar pairs by thresholding. (a) Major
axis length. (b) Minor axis length. (c) Area. (d) Eccentricity. (e)
Distance between centroids. (f) Orientation difference.

B. Corner Elements
To detect the most likely candidate regions for corner

elements, we use the Canny image and threshold on individual
region attributes, namely the area and eccentricity of each
corresponding ellipse. Unlike guide bars, corner elements are
difficult to extract accurately using only region attributes, due
to their small size, indistinct shape, and relatively wide
variation in attributes. To avoid confusion with background
objects of similar size and shape, and to maintain robustness
of threshold values, we extract only a list of candidate regions
and leave a precise determination of corner elements to the
next step in our algorithm.

 6

IV. QUADRANT CLASSIFICATION

In this step, we introduce a new classification scheme based

on the orientation of guide bar pairs. We define quadrants Q1
through Q4 as shown in Figure 10. As will be seen shortly,
this quadrant classification scheme is the key to all subsequent
calculations and processing steps, and provides an organized
mathematical framework for the rest of the algorithm.

Figure 10. Quadrants Q1-Q4.

Let Lθ be the long bar orientation, Sθ be the short bar

orientation,),(LL yx be the centroid location of the long bar,
and),(SS yx be the centroid location of the short bar. The
orientations are measured counterclockwise from the
horizontal and are restricted to 90|θ| L ≤ and 90|θ| S ≤ .
Negative orientations indicate clockwise measurement from
the horizontal. The coordinate system is defined with the x-
axis extending to the right and the y-axis extending
downward. Quadrant assignments are as follows.

 Q1: 0 L ≥θ

SL xx ≥

 Q2: 0 L <θ

SL yy <

 Q3: 0 L ≥θ

SL xx <

 Q4: 0 L <θ

SL yy ≥

A. Center Calculation
Using the quadrant assignments, we now estimate the center

of each code marker region. This data is needed to find corner

locations, which are the ultimate values of interest. Let
),(cc yx be the center for a given code marker.

)(

2
1

,, ScLcc xxx +=

)(
2
1

,, ScLcc yyy += (2)

where),(,, LcLc yx are the center coordinates estimated from the

centroid of the long bar, and),(,, ScSc yx are the center

coordinates estimated from the centroid of the short bar. For
the sake of robustness, we take the average of these two
estimates as our final center location. If Ll and Sl are the long
bar and short bar lengths, respectively, then the two center
estimates are

 ()L1,, θ90cosδ −+= LxLLc kxx

 ()L1,, θ90sinδ −+= LxLLc kyy (3)

 ()θΔ++= |θ|sinδ S2,, SxSSc kxx

 ()θΔ++= |θ|cosδ S2,, SySSc kyy (4)

where

 ⎟
⎠
⎞

⎜
⎝
⎛=

52
11δ 1

Sl (5)

 ⎟
⎠
⎞

⎜
⎝
⎛=

7
34δ 2

Ll (6)

 ⎟
⎠
⎞

⎜
⎝
⎛=Δ −

5
3tan 1

 θ

The multiplicative sign factors SySxLyLx kkkk ,,,,,,, are quadrant

dependent and reflect the code marker orientation.

Q1:
1
1

Ly,

Lx,

−=

−=

k
k

1
1

 Sy,

Sx,

−=

+=

k
k

Q2:
1
1

Ly,

Lx,

+=

−=

k
k

1
1

 S y,

Sx,

−=

−=

k
k

Q3:
1
1

Ly,

Lx,

+=

+=

k
k

1
1

 S y,

Sx,

+=

−=

k
k

Q4:
1
1

Ly,

Lx,

−=

+=

k
k

1
1

 S y,

Sx,

+=

+=

k
k

Q4

Q1 Q2

Q3

 7

Note that in Eq. (5) and (6),
5
Sl and

7
Ll serve as estimates of

the average sidelength of each code marker element.

Our current implementation approximates the guide bar
lengths Ll and Sl in Eq. (5) and (6) with the major axis lengths
of the corresponding ellipses for the guide bar regions
detected by object recognition, as described in Section III .

B. Corner Calculations
Using the center estimates and quadrant

assignments, we can now estimate the four corner locations
and match them to the correct candidate regions detected by
object recognition. Let us label the corners C1 through C4
according to the canonical orientation, as shown in Figure 8,
where the guide bars are in the lower right corner.

Figure 11. Corner labels C1 - C4 for canonical orientation.

Since some corners require information that is not available

until other corners are found, we must calculate the corners in
a precise order, namely C4, C2, C3, and C1.

Corner calculation algorithm:

1. Find C4.

SL

LLSSLS

aa
xaxayyx −

+−+−
=4 (7)

) x- (xa -y ScSS4 =y

 where

)||tan(
)||tan(

L

S

θ
θ

=
=

L

S

a
a

),(),,(SSLL yxyx are the centroids of the long bar and

short bar, and SL θθ , are the orientations. Eq. (7) calculates

C4 as the intersection of the two guide bars.

2. Find C2.

)||(ns
)||cos(

L22,2

L22,2

θγ
θγ

ikyy
kxx

yL

xL

+

+

=

= (8)

 where

 ⎟
⎠
⎞

⎜
⎝
⎛=

7
5.42

Llγ

and 2,xk and 2,yk are multiplicative sign factors that are

quadrant dependent.

 Q1:
1
1

y,2

x,2

−=

+=

k
k

Q2:
1
1

y,2

x,2

−=

−=

k
k

Q3:
1
1

y,2

x,2

+=

−=

k
k

Q4:
1
1

y,2

x,2

+=

+=

k
k

Eq. (8) uses

7
Ll as an approximation for the average

sidelength of each code marker element. The factor of 4.5 is
motivated by the fact that corner C2 is 5 elements away from
the long bar centroid and 4.5 is a robust, conservative
estimate that avoids overshooting the actual corner location.
We note that undershooting is safe since there is a white
buffer region that is one element wide around C2.

3. Find C3.

) ||sin(
)||cos(

 S33,43

S33,43

θγ
θγ

y

x

kyy
kxx

+

+

=

= (9)

 where

 ⎟
⎠
⎞

⎜
⎝
⎛=

5
5.7

3

Slγ

 8

and 3,xk and 2,yk are quadrant dependent, as illustrated in

Figure 10.

 Q1, Q2: (i) 0≥Sθ

1
1

3,

3,

+=

−=

y

x

k
k

 (ii) 0<Sθ

1
1

3,

3,

−=

−=

y

x

k
k

 Q3, Q4: (i) 0≥Sθ

1
1

3,

3,

−=

+=

y

x

k
k

 (ii) 0<Sθ

1
1

3,

3,

+=

+=

y

x

k
k

Eq. (9) uses

5
Sl as an approximation for the average

sidelength of each code marker element.
 Just as in step 4, we use the factor of 7.5 as a robust,

conservative estimate to avoid overshooting the actual corner
location since corner C3 is 8 elements away from the short
bar centroid. As before, undershooting is safe since there is
a white buffer region that is one element wide around C3.

4. Find the matching candidate corner objects for C2 and C3.

 Using the C2 and C3 estimates calculated in steps 2 and

3, select the closest candidate corner objects from the
candidate set obtained by object recognition (see Section III-
B). Update corner coordinates)y,(22x and)y,(33x using

the centroids of these objects.

 For additional robustness, our implementation includes

an extra sanity check to handle the possibility of spurious
guide bars obtained from object recognition. We verify that
the updated corners)y,(22x and)y,(33x are within a

radius of ⎟
⎠
⎞

⎜
⎝
⎛

7
2 Ll and ⎟

⎠
⎞

⎜
⎝
⎛

5
2 Sl of the estimated corners.

 5. Find the angle between guide bars.

 ⎟
⎠
⎞

⎜
⎝
⎛ +

=
2

||||
0

SL θθθ

 6. Find C1.

) | |sin(
)||cos(

 111,1

111,1

θγ
θγ

yc

xc

kyy
kxx

+

+

=

= (10)

 where

 ⎟
⎠
⎞

⎜
⎝
⎛ +

=
21

LS llγ

 and 1,xk and 1,yk are multiplicative sign factors that are

quadrant dependent.

 Q1:

||
2

1
1

0
1

1,

1,

L

y

x

k
k

θθθ +=

−=

+=

 Q2:

||
2

1
1

0
1

1,

1,

S

y

x

k
k

θθθ −=

−=

−=

 Q3:

||
2

1
1

0
1

1,

1,

L

y

x

k
k

θθθ +=

+=

−=

 Q4:

||
2

1
1

0
1

1,

1,

L

y

x

k
k

θθθ +−=

+=

+=

 Eq. (10) calculates

1γ as a conservative estimate of the
distance between the corners C1 and C4.

 In an ideal square code marker, this distance is

 7.7782
2

11
=⎟

⎠
⎞

⎜
⎝
⎛ elements long. Since the code markers in

the camera phone image are distorted and since there is a
one-element wide white buffer region around C1, it is safer
to use an underestimate of this distance by taking the
average of the two guide bar lengths, which is essentially 6
elements long.

7. Find the matching candidate corner object for C1.

 First threshold the set of candidates based on area,

distance from the estimated center, and deviation angle from
the estimated center. The threshold values are calculated
empirically from the given training set. For each of the
remaining candidate corner objects, calculate the ratio of its

 9

distance from)y,(22x to its distance from)y,(33x .

Select the candidate with the distance ratio that is closest to
1.

The extra thresholding used in step 7 is necessary for

robustness since our estimate of C1 is the least accurate out of
all the corners, due its dependency on other estimated values
and the resulting accumulation of estimation errors. Figure 12
compares the estimated corner locations from steps 2, 3, and 6
with the actual locations of the corner elements in training
image 9.

Figure 12. Comparison of estimated corner locations and actual
corner elements.

From step 7, we obtain one of the required outputs for our

algorithm, namely the center pixel for the upper left corner
element in each code marker. This, along with the other three
corner coordinates, are used in a later stage of the algorithm
(see Section VI).

V. BINARY CONVERSION

This step of the algorithm converts images to black and

white in order to read the binary data bits embedded in code
markers. A naive approach would simply convert the entire
color or grayscale image to black and white. However,
because of the poor contrast and low quality of the original
image, doing so will degrade and often destroy the code
marker regions. Figure 13 shows the result of naively
applying binary conversion to the entire grayscale image for
training image 2. Neither of the code markers appear in the
black and white image.

Figure 13. Naive binary conversion.

We solve this problem by finding bounding boxes for each

code marker region and performing localized binary
conversion only within these regions.

A. Bounding Box Calculation
Using the estimated center coordinates),(cc yx from Section

VI-A, we calculate a bounding box for a given coder marker:

],[bybx cc ±±

where

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

52
11,

72
11max3.1 SL

W
llb

This b is a robust overestimate of half the sidelength of the

code marker, using
7
Ll and

5
Sl as estimates of the average

code marker element size. The factor of 1.3 was empirically
found to guarantee that the entire code marker fell within in
the bounding box.

B. Grayscale Threshold Calculation
To convert any grayscale image to black and white, we need

to set a threshold between 0 and 255 so that grayscale
intensities above this value are quantized to white (1) and
those below are quantized to black (0). To get a robust
estimate of the optimal threshold for a given code marker, we
take a window W of size bw x bw centered on)y,(CCx , where

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

52
11,

72
11min SL

W
llb

 10

is a robust underestimate of half the sidelength of the code
marker, so that no part outside the code marker falls within the
window. We then calculate

)minmax(
2
1

ww
II +=τ

as the grayscale threshold, where I is the pixel intensity value,
and apply localized binary conversion on the entire bounding
box region. Figure 14 shows the result for training image 2.

Figure 14. Localized binary conversion.

 11

VI. DATA EXTRACTION

The previous steps in the algorithm successfully determine
the image areas that correspond to marker regions and their
vertices. The remaining task is to extract the bit information
from the code marker regions.

A. Projective Transformation
Projective transformation will find out the position of the

observer in the three dimensional space from given vertices of
a four-sided figure, and maps the image to a scene seen from
another observer's view. Using the vertices provided, it is
possible to fix the code marker region into a clean square.
Please refer to
http://en.wikipedia.org/wiki/Projective_transformation for
more discussion.

i. Shifting the vertices

Given (x,y) coordinates of the center of each corner pixel,

we must find out the coordinates that corresponds to position
just outside of the corner pixels to include the entire encoded
region. Otherwise, about half of the edge rows and columns
will be cut out.

We proceeded by assuming that a circle can represent each

corner pixel. For three of the four corners, we have the area of
black dots. For the bottom right corner, we must calculate the
area from length of the short guide bar. Letting r be 1/2 of 1/5
of the length of the short bar, area can be approximated by
pi*r^2.

The function MoveVertexBack takes three points in its

parameters and moves back the first point along the line that
bisects the angle created by three points. The area information
is passed to determine the distance to move vertices back.
Before calling the function, we multiply the area by 0.6 to get
the best result, which balances the assumption that corner
pixels are circles. The summery is tabulated later in the results
section.

ii. Determining the maximum supported magnification

Because each code marker image is only of certain sizes,

maximum meaningful transformed image size is bounded.
MATLAB's imtransform returns image of maximum size it
can support when specified an overly large output size. It is
always more beneficial to magnify the image as much as
possible to retain all possible information. We also need even
number of pixels between pixels so that same numbers of
pixels exist between an edge and the first pixel read on all

sides.

In order to find the maximum magnification factor that

meets the condition, we specify the output to 1000 pixels and
look at the size of the returned image. We then reverse
calculate the maximum supported magnification.

After we get the maximum magnification factor, we need
the output image to have factor*11+11 pixels: 11 pixels to be
read and factor*11 pixels to be skipped in between.

iii. Running the projective transform

After determining the parameters, we conduct the projective

transform to map a lopsided figure into a square.

 Figure 15. Vertex moving routine

Figure 16. Example projective transformation

B. Magnified marker processing

 12

Before reading the bits of the magnified and squared image,
it is sometimes beneficial to enlarge the islands of each color
in order to not miss them. We performed dilation of small
islands that went above the threshold of 1/8 of the resized
marker area that corresponds to one bit. Such areas were
recursively dilated until it occupied 1/2 of the block. This
process mattered in training_9.jpg and training_10.jpg, and we
set the threshold values by comparing the intermediate images.

Figure 17. Before/after dilation

After dilation of small islands, we remove obviously non-

marker regions of the code markers. We saw that some
markers have white rows and columns around the edge pixels
of the images, although in theory, there should be no non-
marker pixel inside the given and processed vertices. We
check to see if more than 97% of the first several rows or
columns are white, and if so, we reject the row and column.

The number of rows and columns checked depends on the
magnification factor. The threshold value was chosen based
on experience, as this part mattered mostly to training_4.jpg,
training_8.jpg, and training_10.jpg. After trimming, the
image is then resized to have the right number of rows and
columns.

Figure 18. Before/after trimming

C. Picking the color of the blocks

With the largest possible representation of code marker

properly reshaped, realigned, and resized, we are ready to
proceed to reading the bits.

The algorithm reads a small window that sits at the center of
each block. We subdivide the image to have 11x11 of
(factor+1)*(factor+1) pixels large blocks. Each block has odd
number of rows and columns, thus guaranteeing single center
pixel. The algorithm looks at the center pixels and its
neighbors to determine block color. We ultimately chose a
window size of 25 pixels that has the best results of all the
block sizes considered, based on the testing results displayed
later in the report.

Table2 Conflict frequency

When more than two colors coexist in the neighborhood, we

look at the block colors to the top and left.S If two neighbors
are of the same color, we assume that their color has spilled
over to the current window and choose the opposite color for
the current block.

If two colors are different, we take a majority vote of the
members in the current window to determine the block color.

This algorithm provides more robustness than either looking

only at the center pixel or running conflict resolution on the
entire block. By just looking at the center pixels, we may miss

 13

color changes. Taking the conflict resolution on the entire
block will almost always lead to conflicts, and lets the errors
to propagate to subsequent blocks.

 Figure 19. Conflict resolution go here

Figure 20. Example figure of squared and magnified marker region
and corresponding checkerboard

 14

VII. RESULTS

The algorithm described in Sections II through VI achieves

100% accuracy on all 12 training images, with no repeats,
misses, false alarms, or incorrect bits. To test for robustness,
we ran the algorithm on 36 additional images generated by
rotating each original image by 90, 180, and 270 degrees. On
this augmented set, the accuracy achieved is still 100%.

For the set of 12 original training images, the total runtime

on a 3.6 GHz machine is 94 seconds, with a maximum time of
10 seconds for an individual image. This performance falls
well within the runtime restriction of one minute per image.

VIII. CONCLUSION

In this project, we have developed a completely original,

robust system for visual code marker detection that
incorporates edge detection, morphological processing, region
labeling, object recognition, and quadrant classification to
automatically extract and read code marker elements from
relatively low-quality, low-contrast camera phone images.
The cornerstone of the algorithm is quadrant classification,
which provides a unifying mathematical framework for
geometric approximations to calculate the orientation and
corner coordinates of any code marker region. Using this
framework, code marker data extraction is reduced to a
standard projective transformation, with conflict resolution to
handle pixel bleeding. The algorithm does require any offline
training and achieves accurate near-realtime performance on
standard desktop machines. Finally, its robustness has been
confirmed by additional testing on perturbed images from the
given training set.

APPENDIX

May Zhou Quadrant Classification

 Code Marker Detection
 Center Calculation
 Corner Calculation Algorithm
 Bounding Box Determination
 Binary Conversion
 Conflict Resolution Algorithm for

data extraction
 Writing the report (except for Section VI)

Kanako Hayashi Edge Detection

 Morphological Processing
 Object Recognition
 Code Marker Detection
 Quadrant Classification
 Corner Calculation Implementation

Creation of figures & diagrams for report

Yuki Konda Extraction of code marker bits
 Writing Section VI (data extraction)

REFERENCES

[1] R. Gonzalez and R. Woods, Digital Image Processing, 2nd ed., Prentice
Hall, 2002.

[2] A. Jain, Fundamentals of Digital Image Processing, Prentice Hall, 1989.
[3] B. Girod, Lecture Notes for EE368, Spring 2006.

