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I. INTRODUCTION 
 HE purpose of this project is to detect and read visual 
code markers in color images taken by camera phones.  

We are given a set of twelve training images, each containing 
up to three code markers with arbitrary location and 
orientation.  Each code marker is an 11 x 11 array of black and 
white elements, 83 of which represent variable data bits.  The 
remaining 38 elements are fixed and consist of three corner 
elements and two guide bars.  Figure 1 shows a code marker 
with standard orientation, where the two guide bars are in the 
lower right corner. 
 

 

 
Figure 1.  Code marker in standard orientation. 

 
 Our task is to determine the center pixel of the upper left 

corner element for each code marker and extract the 83 bits of 
data encoded.  This task is complicated by several factors.  
First, each code marker element can span multiple pixels and 
have variable size, depending on its relative location within 
the image, and the angle, distance, and perspective from which 
the image was photographed.  Second, each code marker can 
be rotated and distorted by unknown transformations, which 
must be reverse-engineered from the given image.  Third, the 
contrast and visual quality of camera phone images can be 
quite low, thus making it difficult to apply simple color 
segmentation to distinguish black and white elements.  Fourth, 
code markers can be interspersed among background objects 
of similar color, size, and shape, which make it difficult to 
detect genuine code marker regions.  Finally, our processing 
time is restricted to no more than one minute per image. 

In this project, we develop a completely original, robust 
system that combines edge detection, morphological 
processing, region labeling, object recognition, quadrant 
classification, and projective transformation, to accurately 
detect and read visual code markers.  A system flow chart is 
given in Figure 2.  During development, we tested and 
rejected many other techniques, including color segmentation, 
template matching and area correlation, matched filtering, and 
local statistical analysis in both spatial and frequency domains.  

Our current system achieves 100% accuracy on all twelve 
training images, as well as an augmented set of 36 additional 
images obtained from 90º rotations of the original set.  The 
system requires no more than 10 seconds per image on a 3.6 
GHz machine.  Sections II through VI describe the steps in our 
algorithm.  Section VII provides performance results and 
runtime measurements.  Section VIII summarizes the project 
and our contributions. 

 

 
 

Figure 2.  System flow chart. 
 
 

II. EDGE DETECTION AND MORPHOLOGICAL PROCESSING 
 

The first step in our algorithm consists of edge detection 
followed by edge refinement through morphological 
processing.  This step extracts object boundaries, which are 
the relevant features needed to detect code markers. 
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A. Edge Detection 
To apply edge detection, we first convert the color RGB 

image to grayscale using the formula 
 

BGRY 1140.05870.02989.0 ++=       (1) 
 
where Y is between 0 and 255. 

 
We then apply two different edge detectors to target the two 

types of subregions that are fixed in each code marker:  guide 
bars and corner elements.  Sobel edge detection is used to 
enhance straight lines, which are characteristic of guide bars.  
Canny edge detection is used to preserve small round regions, 
which are characteristic of corner elements.  Both operators 
are applied to the grayscale image to produce two separate 
edge images, which are processed in parallel in the next step 
of our algorithm. 

The Sobel and Canny operators were carefully selected for 
their edge detection properties.  Sobel favors the well-defined 
linear edges of guide bars but disrupts small closed contours 
and overlooks weak edges.  Canny preserves small closed 
contours for corner elements, even when edges are weakened 
by poor contrast, but tends to be overly sensitive and produce 
too many spurious edges.  These properties can be explained 
as follows.  Sobel uses two filter kernels, one for horizontal 
gradients and another for vertical gradients, which together 
pick out linear and piecewise linear edges: 
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Canny finds edges by looking for the local maxima of the 

gradient calculated using the derivative of a Gaussian filter.  
Two thresholds are used to detect strong and weak edges, 
resulting in a higher incidence of spurious edges.  Figures 4-6 
compare Sobel and Canny results for training image 1, along 
with results from three other edge detection operators that 
were tested and rejected.  Roberts was rejected for producing 
too many small broken edges, Prewitt for its weaker gradients 
and relative inferiority to Sobel, and Laplacian of Gaussian for 
its oversensitivity and enlargement of contours. 

    
 

Figure 3.  Original image. 
 
 

 
 

Figure 4.  Sobel edge detection. 
 
 

 
 

Figure 5.  Canny edge detection. 
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(a) 
 

 
 

(b)  
 

 
 

(c)   
 

Figure 6.  Rejected edge detection schemes. (a) Roberts, (b) Prewitt, 
(c) Laplacian of Gaussian. 

 
 

(a) 
 

 
 

(b) 
 

 
 

(c) 
 
Figure 7.  Morphological processing.  (a) Removal of  isolated 
pixels.  (b) Dilation.  (c)  Thinning. 
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B. Morphological Processing 
Three morphological operations are applied to both edge 

images to smooth and refine detected edges.  First, isolated 
pixels are removed by eroding with the structuring element 
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Next, the image is dilated with  
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to smooth out edge discontinuities.  This results in a 
thickening of all edges.  To compensate, the final operation 
thins edges to lines of minimal width.  The thinning operation 
preserves the Euler number, which is equal to the number of 
objects in the region minus the number of holes in those 
objects.  Figure 7 shows the result after each morphological 
operation for training image 1. 

 

III.  OBJECT RECOGNITION 
 

Object recognition is performed on the two edge images to 
detect guide bars and corner elements.  Regions in each image 
are labeled using 8-connected neighborhoods.  Figure 8 shows 
the region-labeled Sobel image for training image 8.  Region 
labels are differentiated by color. 
 

 
 

Figure 8.  Region labeling. 
 
Each region is then modeled by an ellipse with the same 

normalized second central moments.  The attributes of these 
ellipses are thresholded to identify the correct regions 

corresponding to guide bar pairs in the Sobel image and 
candidate corner regions in the Canny image.  Both individual 
and pairwise region attributes are thresholded for guide bar 
pair recognition, whereas only individual region attributes are 
used for candidate corner recognition.  All threshold values 
are empirically determined from the given training images and 
are listed in Table I. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A. Guide Bar Pairs 
To recognize and extract guide bar pairs, we use two sets of 

thresholds on the Sobel image.  The first set acts on individual 
region attributes:  major axis length (M), minor axis length 
(m), area (A), and eccentricity (E) for each corresponding 
ellipse.   

 
   majmaj M 21 γγ <<  
   min

2
min
1 γγ << m  

    α>A  
    ε>E  

  
The second set acts on pairwise region attributes:  distance 

between centroids (D) and difference in orientation (θ ) 
between two adjacent regions. 

 

     21 δδ << D   
     βθ   <  

 
The final result is a precise determination of the exact 

regions that correspond to all guide bar pairs in the image.  
Figure 9 illustrates the step-by-step elimination of extraneous 
regions using the two sets of thresholds for training image 9. 

TABLE I 
THRESHOLD VALUES FOR OBJECT RECOGNITION 

γ1
maj 30 

γ2
maj 90 

γ1
maj 6 

γ2
maj 20 

α 85 

ε 0.9 

δ1 55 

δ2 22 

β 28 
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(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 

 
(e) 

 
Figure 9.  Extraction of guide bar pairs by thresholding.  (a) Major 
axis length. (b) Minor axis length. (c) Area. (d) Eccentricity. (e) 
Distance between centroids. (f) Orientation difference. 
 
 

B. Corner Elements 
To detect the most likely candidate regions for corner 

elements, we use the Canny image and threshold on individual 
region attributes, namely the area and eccentricity of each 
corresponding ellipse.  Unlike guide bars, corner elements are 
difficult to extract accurately using only region attributes, due 
to their small size, indistinct shape, and relatively wide 
variation in attributes.  To avoid confusion with background 
objects of similar size and shape, and to maintain robustness 
of threshold values, we extract only a list of candidate regions 
and leave a precise determination of corner elements to the 
next step in our algorithm. 
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IV. QUADRANT CLASSIFICATION 
 
In this step, we introduce a new classification scheme based 

on the orientation of guide bar pairs.  We define quadrants Q1 
through Q4 as shown in Figure 10.  As will be seen shortly, 
this quadrant classification scheme is the key to all subsequent 
calculations and processing steps, and provides an organized 
mathematical framework for the rest of the algorithm. 

 

 
 

Figure 10.  Quadrants Q1-Q4. 
 
 
Let Lθ  be the long bar orientation, Sθ  be the short bar 

orientation, ),( LL yx  be the centroid location of the long bar, 
and ),( SS yx  be the centroid location of the short bar.  The 
orientations are measured counterclockwise from the 
horizontal and are restricted to 90|θ| L ≤  and 90|θ| S ≤ .  
Negative orientations indicate clockwise measurement from 
the horizontal.  The coordinate system is defined with the x-
axis extending to the right and the y-axis extending 
downward.  Quadrant assignments are as follows. 

 
 Q1:  0   L ≥θ  

            
SL xx ≥  

        
 Q2: 0   L <θ  
       

SL yy <  

 
 Q3: 0   L ≥θ  

              
SL xx <  

 
  Q4: 0   L <θ  
            

SL yy ≥  
  

A. Center Calculation 
Using the quadrant assignments, we now estimate the center 

of each code marker region.  This data is needed to find corner 

locations, which are the ultimate values of interest.  Let 
),( cc yx  be the center for a given code marker. 

 
                )(

2
1

,, ScLcc xxx +=    

                )(
2
1

,, ScLcc yyy +=  (2)

  
 

where ),( ,, LcLc yx  are the center coordinates estimated from the 

centroid of the long bar, and ),( ,, ScSc yx  are the center 

coordinates estimated from the centroid of the short bar.  For 
the sake of robustness, we take the average of these two 
estimates as our final center location.  If  Ll  and Sl  are the long 
bar and short bar lengths, respectively, then the two center 
estimates are 
 
 ( )L1,, θ90cosδ −+= LxLLc kxx  

    ( )L1,, θ90sinδ −+= LxLLc kyy  (3)

 
  

 
 ( )θΔ++= |θ|sinδ S2,, SxSSc kxx  

 ( )θΔ++= |θ|cosδ S2,, SySSc kyy  (4) 
 

where 
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The multiplicative sign factors SySxLyLx kkkk ,,,,,,, are quadrant 

dependent and reflect the code marker orientation. 
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Note that in Eq. (5) and (6), 
5
Sl  and 

7
Ll  serve as estimates of 

the average sidelength of each code marker element. 
 

Our current implementation approximates the guide bar 
lengths Ll  and Sl  in Eq. (5) and (6) with the major axis lengths 
of the corresponding ellipses for the guide bar regions 
detected by object recognition, as described in Section III . 

 

B. Corner Calculations 
Using the center estimates and quadrant 

assignments, we can now estimate the four corner locations 
and match them to the correct candidate regions detected by 
object recognition.  Let us label the corners C1 through C4 
according to the canonical orientation, as shown in Figure 8, 
where the guide bars are in the lower right corner. 
 

 
 

Figure 11. Corner labels C1 - C4 for canonical orientation. 
 
 
Since some corners require information that is not available 

until other corners are found, we must calculate the corners in 
a precise order, namely C4, C2, C3, and C1. 

 
Corner calculation algorithm: 

 
1. Find C4. 

 

SL

LLSSLS

aa
xaxayyx −

+−+−
=4  (7)

 
  

      
) x- (xa -y ScSS4 =y  

 
       where 

 

             
)||tan(
)||tan(

L

S

θ
θ

=
=

L

S

a
a  

 
),(),,( SSLL yxyx  are the centroids of the long bar and 

short bar, and SL θθ ,  are the orientations.  Eq. (7) calculates 

C4 as the intersection of the two guide bars. 
 

2.  Find C2. 
 

                     
)||(ns
)||cos(

L22,2

L22,2

θγ
θγ

ikyy
kxx

yL

xL

+

+

=

=  (8) 

     
 where  
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Llγ  

  
and 2,xk  and 2,yk  are multiplicative sign factors that are 

quadrant dependent. 
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Eq. (8) uses 

7
Ll  as an approximation for the average 

sidelength of each code marker element.  The factor of 4.5 is 
motivated by the fact that corner C2 is 5 elements away from 
the long bar centroid and 4.5 is a robust, conservative 
estimate that avoids overshooting the actual corner location.  
We note that undershooting is safe since there is a white 
buffer region that is one element wide around C2. 

 
3.  Find C3. 

 

                    
) ||sin(  
)||cos(
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          where 

 

    ⎟
⎠
⎞

⎜
⎝
⎛=

5
5.7

3

Slγ  

      
 



 8

and 3,xk  and 2,yk  are quadrant dependent, as illustrated in 

Figure 10. 
 
 Q1, Q2: (i) 0≥Sθ  
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Eq. (9) uses 

5
Sl  as an approximation for the average 

sidelength of each code marker element. 
    Just as in step 4, we use the factor of 7.5 as a robust, 

conservative estimate to avoid overshooting the actual corner 
location since corner C3 is 8 elements away from the short 
bar centroid.  As before, undershooting is safe since there is 
a white buffer region that is one element wide around C3. 

 
 

4. Find the matching candidate corner objects for C2 and C3. 
 
  Using the C2 and C3 estimates calculated in steps 2 and 

3, select the closest candidate corner objects from the 
candidate set obtained by object recognition (see Section III-
B).  Update corner coordinates )y,( 22x  and )y,( 33x  using 

the centroids of these objects.   
 
     For additional robustness, our implementation includes 

an extra sanity check to handle the possibility of spurious 
guide bars obtained from object recognition.  We verify that 
the updated corners )y,( 22x  and )y,( 33x are within a 

radius of  ⎟
⎠
⎞

⎜
⎝
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7
2 Ll   and  ⎟
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2 Sl  of the estimated corners.  

 
 

     5. Find the angle between guide bars. 
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      6. Find C1. 
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         Eq. (10) calculates 

1γ  as a conservative estimate of the 
distance between the corners C1 and C4.   

    In an ideal square code marker, this distance is 

 7.7782
2

11
=⎟

⎠
⎞

⎜
⎝
⎛  elements long.  Since the code markers in 

the camera phone image are distorted and since there is a 
one-element wide white buffer region around C1, it is safer 
to use an underestimate of this distance by taking the 
average of the two guide bar lengths, which is essentially 6 
elements long. 

 
7. Find the matching candidate corner object for C1. 

 
 First threshold the set of candidates based on area, 

distance from the estimated center, and deviation angle from 
the estimated center.  The threshold values are calculated 
empirically from the given training set.  For each of the 
remaining candidate corner objects, calculate the ratio of its 
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distance from )y,( 22x  to its distance from )y,( 33x  .  

Select the candidate with the distance ratio that is closest to 
1. 

 
The extra thresholding used in step 7 is necessary for 

robustness since our estimate of C1 is the least accurate out of 
all the corners, due its dependency on other estimated values 
and the resulting accumulation of estimation errors.  Figure 12 
compares the estimated corner locations from steps 2, 3, and 6 
with the actual locations of the corner elements in training 
image 9. 

 
Figure 12. Comparison of estimated corner locations and actual 
corner elements. 

 
From step 7, we obtain one of the required outputs for our 

algorithm, namely the center pixel for the upper left corner 
element in each code marker.  This, along with the other three 
corner coordinates, are used in a later stage of the algorithm 
(see Section VI). 

 

V. BINARY CONVERSION 
 
This step of the algorithm converts images to black and 

white in order to read the binary data bits embedded in code 
markers.  A naive approach would simply convert the entire 
color or grayscale image to black and white.  However, 
because of the poor contrast and low quality of the original 
image, doing so will degrade and often destroy the code 
marker regions.  Figure 13 shows the result of naively 
applying binary conversion to the entire grayscale image for 
training image 2.  Neither of the code markers appear in the 
black and white image. 

 

 
 

Figure 13.  Naive binary conversion. 
 
 
We solve this problem by finding bounding boxes for each 

code marker region and performing localized binary 
conversion only within these regions.    

 

A.  Bounding Box Calculation 
Using the estimated center coordinates ),( cc yx  from Section 

VI-A, we calculate a bounding box for a given coder marker: 
 

   ],[ bybx cc ±±  
 
where  
 

        
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞
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⎝
⎛
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52
11,

72
11max3.1 SL

W
llb  

     
This b is a robust overestimate of half the sidelength of the 

code marker, using 
7
Ll  and 

5
Sl  as estimates of the average 

code marker element size.  The factor of 1.3 was empirically 
found to guarantee that the entire code marker fell within in 
the bounding box. 

 

B. Grayscale Threshold Calculation 
To convert any grayscale image to black and white, we need 

to set a threshold between 0 and 255 so that grayscale 
intensities above this value are quantized to white (1) and 
those below are quantized to black (0).  To get a robust 
estimate of the optimal threshold for a given code marker, we 
take a window W of size bw x  bw centered on )y,( CCx , where 
 

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

52
11,

72
11min SL

W
llb  
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is a robust underestimate of half the sidelength of the code 
marker, so that no part outside the code marker falls within the 
window.  We then calculate 
 

      )minmax(
2
1

ww
II +=τ  

 
as the grayscale threshold, where I is the pixel intensity value, 
and apply localized binary conversion on the entire bounding 
box region.  Figure 14 shows the result for training image 2. 
 
 

 
 

Figure 14. Localized binary conversion. 
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VI.  DATA EXTRACTION 
 

The previous steps in the algorithm successfully determine 
the image areas that correspond to marker regions and their 
vertices.  The remaining task is to extract the bit information 
from the code marker regions.   

 

A.  Projective Transformation 
Projective transformation will find out the position of the 

observer in the three dimensional space from given vertices of 
a four-sided figure, and maps the image to a scene seen from 
another observer's view.  Using the vertices provided, it is 
possible to fix the code marker region into a clean square.  
Please refer to 
http://en.wikipedia.org/wiki/Projective_transformation for 
more discussion.    

 
i. Shifting the vertices 
 
Given (x,y) coordinates of the center of each corner pixel, 

we must find out the coordinates that corresponds to position 
just outside of the corner pixels to include the entire encoded 
region.  Otherwise, about half of the edge rows and columns 
will be cut out. 

 
We proceeded by assuming that a circle can represent each 

corner pixel.  For three of the four corners, we have the area of 
black dots.  For the bottom right corner, we must calculate the 
area from length of the short guide bar.  Letting r be 1/2 of 1/5 
of the length of the short bar, area can be approximated by 
pi*r^2.   

 
The function MoveVertexBack takes three points in its 

parameters and moves back the first point along the line that 
bisects the angle created by three points.  The area information 
is passed to determine the distance to move vertices back.  
Before calling the function, we multiply the area by 0.6 to get 
the best result, which balances the assumption that corner 
pixels are circles.  The summery is tabulated later in the results 
section.   

 
 

ii. Determining the maximum supported magnification 
 
Because each code marker image is only of certain sizes, 

maximum meaningful transformed image size is bounded.  
MATLAB's imtransform returns image of maximum size it 
can support when specified an overly large output size.  It is 
always more beneficial to magnify the image as much as 
possible to retain all possible information.  We also need even 
number of pixels between pixels so that same numbers of 
pixels exist between an edge and the first pixel read on all 

sides. 
 
In order to find the maximum magnification factor that 

meets the condition, we specify the output to 1000 pixels and 
look at the size of the returned image.  We then reverse 
calculate the maximum supported magnification. 

After we get the maximum magnification factor, we need 
the output image to have factor*11+11 pixels: 11 pixels to be 
read and factor*11 pixels to be skipped in between. 

 
iii. Running the projective transform 
 
After determining the parameters, we conduct the projective 

transform to map a lopsided figure into a square.   
 

 
  Figure 15. Vertex moving routine  

 

 
Figure 16. Example projective transformation 

 

B.  Magnified marker processing 
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Before reading the bits of the magnified and squared image, 
it is sometimes beneficial to enlarge the islands of each color 
in order to not miss them.  We performed dilation of small 
islands that went above the threshold of 1/8 of the resized 
marker area that corresponds to one bit.  Such areas were 
recursively dilated until it occupied 1/2 of the block.  This 
process mattered in training_9.jpg and training_10.jpg, and we 
set the threshold values by comparing the intermediate images.   
 

 
Figure 17.  Before/after dilation 

 
After dilation of small islands, we remove obviously non-

marker regions of the code markers.  We saw that some 
markers have white rows and columns around the edge pixels 
of the images, although in theory, there should be no non-
marker pixel inside the given and processed vertices.  We 
check to see if more than 97% of the first several rows or 
columns are white, and if so, we reject the row and column.  

The number of rows and columns checked depends on the 
magnification factor.  The threshold value was chosen based 
on experience, as this part mattered mostly to training_4.jpg, 
training_8.jpg, and training_10.jpg.  After trimming, the 
image is then resized to have the right number of rows and 
columns. 

 

Figure 18.  Before/after trimming 
 

C.  Picking the color of the blocks 
 
With the largest possible representation of code marker 

properly reshaped, realigned, and resized, we are ready to 
proceed to reading the bits.     

The algorithm reads a small window that sits at the center of 
each block.  We subdivide the image to have 11x11 of 
(factor+1)*(factor+1) pixels large blocks.  Each block has odd 
number of rows and columns, thus guaranteeing single center 
pixel.  The algorithm looks at the center pixels and its 
neighbors to determine block color.  We ultimately chose a 
window size of 25 pixels that has the best results of all the 
block sizes considered, based on the testing results displayed 
later in the report.     

 
Table2 Conflict frequency 

 
 
When more than two colors coexist in the neighborhood, we 

look at the block colors to the top and left.S  If two neighbors 
are of the same color, we assume that their color has spilled 
over to the current window and choose the opposite color for 
the current block.   

If two colors are different, we take a majority vote of the 
members in the current window to determine the block color.   

 
This algorithm provides more robustness than either looking 

only at the center pixel or running conflict resolution on the 
entire block.  By just looking at the center pixels, we may miss 



 13

color changes.  Taking the conflict resolution on the entire 
block will almost always lead to conflicts, and lets the errors 
to propagate to subsequent blocks. 

 
 

 
 
        Figure 19. Conflict resolution go here 

 
 
 
Figure 20. Example figure of squared and magnified marker region 
and corresponding checkerboard  
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VII. RESULTS  
 
The algorithm described in Sections II through VI achieves 

100% accuracy on all 12 training images, with no repeats, 
misses, false alarms, or incorrect bits.  To test for robustness, 
we ran the algorithm on 36 additional images generated by 
rotating each original image by 90, 180, and 270 degrees.  On 
this augmented set, the accuracy achieved is still 100%. 

 
For the set of 12 original training images, the total runtime 

on a 3.6 GHz machine is 94 seconds, with a maximum time of 
10 seconds for an individual image.  This performance falls 
well within the runtime restriction of one minute per image.   
 

VIII. CONCLUSION 
 
In this project, we have developed a completely original, 

robust system for visual code marker detection that 
incorporates edge detection, morphological processing, region 
labeling, object recognition, and quadrant classification to 
automatically extract and read code marker elements from 
relatively low-quality, low-contrast camera phone images.  
The cornerstone of the algorithm is quadrant classification, 
which provides a unifying mathematical framework for 
geometric approximations to calculate the orientation and 
corner coordinates of any code marker region.  Using this 
framework, code marker data extraction is reduced to a 
standard projective transformation, with conflict resolution to 
handle pixel bleeding.  The algorithm does require any offline 
training and achieves accurate near-realtime performance on 
standard desktop machines.  Finally, its robustness has been 
confirmed by additional testing on perturbed images from the 
given training set. 

 

APPENDIX 
 
May Zhou    Quadrant Classification 

       Code Marker Detection 
       Center Calculation  
       Corner Calculation Algorithm 
       Bounding Box Determination 
       Binary Conversion 
       Conflict Resolution Algorithm for  

data extraction 
       Writing the report (except for Section VI) 

 
Kanako Hayashi  Edge Detection 

       Morphological Processing 
       Object Recognition 
       Code Marker Detection 
       Quadrant Classification 
       Corner Calculation Implementation 

Creation of figures & diagrams for report 
 

Yuki Konda    Extraction of code marker bits 
       Writing Section VI (data extraction) 
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