
EE368 Project Report 

Detection and Interpretation of Visual Code 

Markers 
 

Taral Joglekar, Joel Darnauer and Keya Pandia 

Stanford University 

 

 

 

I. INTRODUCTION 

This project aims at creating a set of image processing 
algorithms that can detect two-dimensional visual code 
markers in images and read off the bit patterns embedded 
in these codes. The construction of these markers is 
described in [1]. The images are of inferior quality, 
obtained from mobile phone cameras, which have high 
ISO noise and changing light gradient throughout the 
image. Also, the markers can be located at any position 
within the image having arbitrary scale, rotation and slight 
perspective distortion. This report describes the various 
stages of our proposed pipeline, the algorithms used, and 
the performance results obtained for a set of training and 
test images. 

II. PROCESS PIPELINE 

Our detection process can be broadly categorized into 

three main stages viz. 

Stage 1: Image cleanup and thresholding 

Stage 2: Visual Marker detection 

Stage 3: Code perspective correction and readout 

The following sections describe each of the three stages. 

III. IMAGE CLEANUP AND THRESHOLDING 

The given images are low quality with a lot of high 

ISO speckle noise, brightness gradients and blurring. 

Thus an important step before thresholding is the cleanup 

of these images. We tried various methods for image 

cleanup separately from the thresholding. 

 

 
Figure 1: Original Training Images 

 

Noise Removal: We tried removing the noise using 

median filtering, gaussian blurring and non-linear color 

aberration detection. In all cases, we realized that for 

most of the noise the spatial extent of the speckles was of 

the same order as the corner features of the visual code 

marker. Hence any attempt to filter out the noise 

selectively also adversely affected any further attempts to 

successful thresholding of the ‘region of interest’. Hence 

we decided to not apply any explicit techniques to try and 

remove the speckle noise. 

 

Color to grayscale conversion: The original images are 

color images and thus there was an initial temptation to 

use the extra color information available to aid in the 

recognition of the possible markers and non-marker false 

positives in the image. A major problem with this 

approach was that the bad chroma capture of the mobile 

camera meant that a color that was actually consistent 

was represented in the image with varying color 

components. For example, what should have been black 

color for the visual marker segments was actually 

captured as low intensity red or green or blue. Thus to 

avoid this effect, we used the value channel of the image 

(value from HSV decomposition) as the grayscale 

conversion for this image. We also tried using the 

average of red and green component as the gray scale 

value as given in [1], but found that using value worked 

better in some cases. 

 

Brightness Equalization: The varying brightness can be 

compensated in two ways. First, we can have a specific 

brightness equalization stage that tries to remove the 

brightness gradient in the image or, secondly, we can 

incorporate an adaptive thresholding algorithm that 

accounts for the slow change in brightness within and 

across image scan lines. Our experiments showed that use 

of both these techniques gave the best results for the set 

of training images that we used. 

 

 
Figure 2: Brightness Adjusted Images 

 

The brightness equalization stage performs brightness 

equalization on parts of the image by subdividing the 

image into smaller blocks and scaling the block elements 



so that the highest value element in any block is one. This 

method works very well within the block, but gives sharp 

edge artifacts along the boundaries of the blocks. A major 

problem with these edges is that they are usually more 

prominent than the code marker edges and create a lot of 

false positives. To avoid this effect we, used overlapping 

blocks, which reduces this effect.  

 

Adaptive thresholding: After the brightness equalization 

we implemented a straight single value thresholding of 

the image. For this we marked anything below a 

brightness value below 1/2 as black, anything above as 

white. But this method did not work at all and we then 

implemented a (mean – C) algorithm. Here the threshold 

to use for a particular pixel was obtained by finding the 

mean of values in its neighborhood and subtracting a 

constant C from it. The problem with this approach was 

that fixing a single value for a single image was 

impossible. To compensate for this, we wrote a adaptive 

algorithm that varied the neighborhood size and the value 

of C till the number of thresholded components in the 

image fell below a preset value. Though this worked 

much better than a fixed C algorithm, we still needed to 

use an arbitrary value for the maximum number of 

components and this value seemed to be inextricably 

linked with the number of code markers in the image. 

Hence a value that worked very well with images with a 

single code marker worked pretty badly with images with 

three markers and vice-versa. 

With all these failed attempts, we went back to [2] and 

implemented the thresholding algorithm outlined there, 

which basically works on a row by row basis for the 

image, alternating through the lines, once from left to 

right and then from right to left. It uses a history of 

(s=width/8) pixels and calculates the threshold as: 

 

5.0=initialtval  

newoldnew pixelval
s

tvaltval +







−∗=

1
1  

 

Then the threshold value is used as the t
th

 percentage 

down value from tval. i.e. 

 








 −
=

100

100
*

t
tvalthreshold newnew  

 

The authors of [2] suggest using t = 15, and we found that 

the algorithm does work very well of this value. But for 

our images only doing this much was not enough. There 

were still some markers that would be too low intensity to 

be detected by this algorithm. As a final addition, we 

applied a high pass filter to the grayscale image, which 

compares the current pixel with a sampling of other 

pixels outside a 4x4 neighborhood, just to enhance the 

larger gradients in brightness. We use a non brightness 

preserving filter, so that bright areas become brighter than 

before and darker areas do not increase in brightness as 

much. This final step gave very good results for the 

training images. 

 

 
 

Figure 3: Thresholded Images, notice that all the code 

markers are seen prominently 

 

IV. VISUAL CODE DETECTION 

Locating Candidate Guide Bars 

 After the black and white image has been generated, we 

attempt to locate any code markers that are present in the 

image. Before trying out new algorithms, we 

implemented the algorithm as suggested in [1], where we 

look for best fit ellipses within the regions located by the 

thresholding algorithm. The algorithm for detecting 

rectangular (or elliptical) regions of specific eccentricities 

relies on the first and second order moments for the 

regions identified. To optimize the computation of 

moments and to speed up the algorithm, we sift out the 

regions that are too small or too large to meet the criteria 

for the guide-bars. This would eliminate a lot surrounding 

regions that are a few pixels in size and also those that are 

too large to be considered. The moments computed from 

the remaining regions are primarily the mean in X and Y, 

the second order moment in X and Y and the covariance 

of X and Y. The relevant math is given in [1]. 

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

 
Figure 4: Regions remaining after small and large region 

removal 

 

We then identify guide bars by fitting ellipses around the 

possible candidates and reject the candidates that do not 

have ellipse-eccentricities falling in the permissible 

range. This algorithm, however, when applied to all the 

training images gives a very broad range of eccentricity 

values [1/30, 1]. Thus a lot of unwanted regions get 

selected as possible guide-bar candidates. The major 

problem with this approach was that we could not narrow 



down the eccentricity range for ellipse fitting, resulting in 

a lot of false positives. Hence we used a different 

technique for rectangle detection as outlined below. 

This method begins with region detection using the 

bwlabel command and the initialization of a table 

containing statistics on the r regions.  The erode 

operation is used to compute an image that is used for 

perimeter calculations. 

The labeled image is traversed a single time 

pixel by pixel and the first and second order sums are 

accumulated into the table along with area and perimeter 

information and the minimum and maximum extents of 

the region.  An earlier version of the program included a 

check for breaks in the scan lines but this test was 

removed for performance reasons.   

 

The image scan is the most time consuming part of the 

program taking about 10 seconds to iterate through the 

pixels on the SCIEN lab machines.  If Matlab 

implemented the table lookup as constant time 

operations, the algorithm should be O(r + p) where p is 

the number of pixels in the image.  To avoid the 

possibility that the large loop was slow because of the 

interpreter, we also checked a second algorithm which 

looped over the number of regions and used Matlab’s 

hard coded matrix operations.  This second approach had 

a theoretical complexity of O(rp), but took only about 

twice as long, showing that the table lookup is a 

substantial part of the delay.  Because of this we stuck 

with the initial faster algorithm. 

 

Once the image database has been constructed we 

examine each region to see if it is a possible guide bar.  

The sums for each region are divided by the region area 

to generate the first and second order moments for the 

region.  Once the second order moments are known we 

compute the angle of the major axis. This angle is used to 

rotate the moments so we can find the variance of the 

object along its major (va) and minor (vb) axis.  

 

 
Figure 5: Results of the moment-based rectangle filter. Despite the 

large amount of clutter in the image(gray), only the guide bars and 

one extraneous line are selected for further processing (black). 

 

If the object were a perfect rectangle at some rotation, its 

length and width would be related to the second moments 

by a constant factor.  We compute these putative length 

and width for each object at this step: 

 112 += avL   (1) 

The “+1” term is needed because the black and white 

image is discrete.  A similar computation is performed for 

the minor axis (width).  An advantage of this technique 

over the ellipse-based calculations in [1] is that it 

produces more accurate length estimates because it is 

expecting square corners.  Note that this method has 

some vulnerability if the perspective is very steep since 

the codes will begin to look like parallelograms instead of 

rectangles.  We have not observed any such problems. 

 

After these preliminaries, we exclude objects based on a 

number of criteria.  Objects smaller than two pixels in 

either dimension are excluded and so are objects near the 

edge of the image.  The remaining objects have their 

measured perimeter and area compared to the area and 

perimeter of an ideal rectangle with the length and width 

computed based on moments.   Objects that are not within 

about 50% of the predicted value are excluded.  This test 

does a good job of eliminating objects with an Euler 

number other than 1 as well as objects with irregular 

boundaries.  All of the remaining objects are marked as 

possible bars or cornerstones and then their aspect ratio is 

computed.  Bars that are within about 65% of the target 

are marked as candidate guide bars. 

 

Although the filter for the rectangle test has a very wide 

tolerance, it is surprisingly good at rejecting regions.  

Most images in the data set produce several hundred 

regions, while the number of regions that pass the 

rectangle test is usually less than thirty. 

 

Cornerstone detection: Once we have a list of candidate 

guides we scan them to see if they fit the guide post 

criteria.  Each end of the guide bar is checked to see if 

there is a candidate cornerstone.  The rectangle test is 

applied to any object in the expected cornerstone location 

except that in this case the aspect ratio must be less than 

1.5.  If the upper-right cornerstone is detected, we look 

for the lower-right bar.  The angle and length of this bar 

is used to find the position of the lower-left cornerstone. 

 

Location of the final origin cornerstone is a little trickier.  

We can frame the problem as that of finding the 

perspective projection from 3-D to 2D of the sum of three 

vectors given the 2D projections of each of the vectors.  

Each of the three known points in the code lies on a 

unique ray in 3D world space.  To find the position of the 

code marker in world space, we could reduce the problem 

to choosing the z-coordinate for each coordinate in world 

space.  Since we don’t care about the absolute z value 

only the ratios, we can fix on of the z-values at one and 

solve for the other two with the constraint that the two 

sides of the code have equal extent and are orthogonal in 

the 3-D world coordinate system. 

 

In practice we found that it was not necessary to solve 

this system of quadratic equations and simply assume that 

the code markers form a parallelogram.  This estimate has 

a larger error than other estimates, so we use a larger 

search radius around the estimated location and pick the 



outermost cornerstone-like object in the region of 

interest.  After this part of the algorithm is complete we 

have a code marker position for each corner. 

 

 
Figure 6: Results of Cornerstone finding 

 

 

V. CODE  BITS READOUT 

 

The next step in the pipeline is to find a perspective 

correction (for small perspective cases only) and then 

transform the code from image space to the code space. 

We tried the algorithm given in [1] for this. We later 

changed this algorithm for a simpler one in which we 

mapped all the 121 code marker bit centers onto the 

original image space and readout the pixel values at those 

positions. Since we only had a code detection algorithm 

that worked for low perspective distorted images, this 

meant that all the bit positions were linearly spaced and 

we could use simple interpolation to find the bit center 

positions. Once the co-ordinates for the four corners have 

been identified, this interpolation algorithm reads out the       

data bits column-wise from top to bottom and then left to 

right from the code marker as an array of 83 consecutive 

bits which correspond to the data content (without the 

identifying guide bars bits). We place these bits into the 

appropriate positions in the 11x11 grid to obtain the 

complete marker array or image.  As mentioned, this fails 

for extreme perspectives. The result of this algorithm on 

the code marker shown in Figure 6 is shown in Figure 7. 

 

 
Figure 7: Bit readout from recognized code marker 

VI. PERFORMANCE METRICS 

After some bug fixes we were able to get our image 

pipeline working with zero errors on the training images.  

We then proceeded to generate some test images that 

would stress other dimensions such as extreme 

perspective and strange illumination conditions.  These 

test cases revealed some additional bugs and some 

limitations with the initial thresholding algorithms 

especially on very bright images.  We decided that we 

needed a way to compare algorithms that would get a 

perfect score on the test images in some standardized 

way. To accomplish this we wrapped the evaluation script 

in a routine that degrades the test image with a variable 

amount of gaussian blur and additive noise.  By sweeping 

these parameters we can get a bit-error-rate versus 

blur/noise characteristic for a given algorithm over the 

whole training data set. 

 

The following figure shows the bit error performance for 

the original data set for two candidate image thresholding 

algorithms. 

Alg 1: The final algorithm that we used. 

Alg 2: This algorithm uses soft-coring to reduce noise 

and then selects a threshold by finding a weighted mean 

in the neighborhood of each pixel. The weighting 

function is the Hann window. 

Bit Error Rate vs Blur

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8

Gaussian Blur (sigma pixels)

B
E

R Alg 1

Alg 2

 
 

Bit Error Rate vs Additive Noise

0

0.2

0.4

0.6

0.8

1

1.2

0 16 32 48 64

Std Deviation of Noise (0-255 scale)

B
it

 E
rr

o
r 

R
a

te

Alg 1

Alg 2

 
 

Both the above algorithms achieved perfect scores in the 

test images, but Algorithm 2 is more susceptible to noise 

and blurring effects than Algorithm 1. 



Table below gives performance metrics – Error statistics, 

Euclidean distance and run-time for each one of the given 

images in the training set provided to us. There we no 

false positives or negatives. 

 

Image 

Number 

Time 

taken 

Avg. 

Error in 

dist of 

Origin 

location 

No of 

correct 

bits 

No of 

bits 

detected 

1 16 0.8 83 83 

2 14 1.1 166 166 

3 12 1.2 249 249 

4 15 1.1 83 83 

5 18 1.1 249 249 

6 12 1.4 83 83 

7 16 1.2 166 166 

8 15 0.8 83 83 

9 15 1.1 249 249 

10 21 0.6 249 249 

11 13 1.8 83 83 

12 19 0.2 166 166 

 

Histogram Considerations for Adaptive Thresholding and 

Contrast and Brightness Adjustment: As part of our test 

routine, we created some test images from our camera 

phone and tried running our algorithm on those images. 

We observed cases where the algorithm failed and tried to 

look into possible reasons and fixes for the problems that 

we encountered. The primary cause for concern was that 

the images obtained from our camera were far brighter 

were basically histogram equalized as compared to the 

images in the training set provided to us. Histograms of 

two sample images (one from the training set and one 

from our set of images) are given below. It is very 

evident that they are fundamentally different in their 

nature. 

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

3500

4000
Training Image

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70
Our Camera Image

 
Figure 8: Histogram comparison of training and test images 

 

We tried some brightness reduction and contrast stretch 

on our images and observed a marginal improvement in 

performance.  

 

Breaking cases for our algorithm: From the test images 

that we obtained from our camera phone, we concluded 

that our algorithm fails for the following extreme case:  

� Extreme Perspective: Since our algorithm works on a 

parallelogram approximation of the code marker, an 

extreme perspective breaks the algorithm. 

� Extreme overall image brightness: This causes our 

adaptive threshold algorithm to break because there 

no longer is sharp enough contrast for the marker 

read-out and segmentation. 

� Marker Identifiers less than 2 pixels wide: Trying to 

detect markers below this threshold is susceptible to 

noise and hence false positives. 

� Markers within 10 pixels of the image boundary: We 

added this condition to remove edge artifacts of 

brightness enhancement near the image boundaries. 

 

VII. CONCLUSION 

The algorithm designed gives high accuracy and excellent 

performance for images with suitable resolution, clarity 

and contrast to give an efficient identification and read-

out of marker bits. The algorithm may be modified to 

work on images fundamentally different from the ones it 

is trained to decipher. Further improvement could 

incorporate intelligent routines that automatically adjust 

to varying resolutions, contrasts and image qualities. This 

could be very useful as different cameras have very 

diverse ranges of image quality and resolution.   

REFERENCES 

[1] Michael Rohs, “Real-World Interaction with Camera Phones”, 
Institute of Pervasive Computing, Swiss Federal Institute of 
Technology, Zurich. 

[2] Pierre D.Wellner: “Adaptive Thresholding for the DigitalDesk”, 
Technical Report EPC-93-110, Rank Xerox Research Centre, 
Cambridge, UK, 1993. 

[3] Michael Rohs, “Marker Based Interaction Techniques for Camera 
Phones”, http://www.inf.ethz.ch/personal/rohs/visualcodes/rohs-
mu3i-final.pdf 

[4] Jun Rekimoto et al., “CyberCode: Designing augmented Reality 
Environments with Visual Tags”,    http://www.csl.sony.co.jp/ 
person/rekimoto/papers/dare2000.pdf 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX 1  
Our Test Images 

 

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

 
Image with high brightness 

 

 

 
Image brightness adjusted to match training image 

brightness 

 

 

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

 
Algorithm fails for such high perspectives 

 

 

 

 

 

 

 

 

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

 
Algorithm did not give a false positive for the partially 

hidden code marker 

 

 

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

 
Algorithm worked in spite of large brightness variance 

 

 

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

 
Algorithm worked for the larger marker but not for the smaller 

one 

 

 

 

 

 



 

 

 

APPENDIX 2: Log of Work Done 
 

 

Taral Joglekar 

� Tested various methods for noise removal, but 

these were not included in the final submission 

� Wrote the brightness adjustment algorithms for 

overlapped and non-overlapped blocks  

� Image prefiltering for adaptive thresholding by 

using blurring filter for removing hard edges 

followed by a variation of the edge filtering to 

enhance larger brightness changes 

� Adaptive Thresholding using algorithm given in 

[1] 

 

Joel Darnauer 

� Wrote the guidebar/cornerstone finder including 

the computation of moments and the rectangle 

filter 

� Wrote the graphics debug routines 

� Wrote an alternative thresholding algorithm 

based on soft-coring and a 2D thresholding 

filter.  This algorithm was "Alg 2" from the 

paper and was not included in the final 

submission. 

� Wrote the algorithm comparison program which 

feeds noisy/blurry images and measures bit 

error rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keya Pandia 

� Wrote a preliminary Adaptive Thresholding 

algorithm to support the algorithm to convert 

the RGB color image to a good contrast black 

and white image 

� Designed an algorithm for region elimination 

based on sizes 

� Designed the tables for moments and code to 

compute covariance and centroids and the code 

for region selection based on ellipse fitting and 

selecting the range of eccentricities (which 

wasn’t eventually included in the final project) 

� Wrote the code for interpolating the positions of 

pixels for bit-readout and the algorithm to read 

out the information bits 

� Worked on image contrast and brightness 

adjustment to investigate the efficiency of the 

code for varying image brightness and contrast. 


