
Detection of Visual Code Markers

Murat Aksoy, Tolga Çukur, Yusuf Özuysal
Department of Electrical Engineering, Stanford University

Abstract

In this paper, we present a recognition algorithm to iden-
tify visual code markers embedded in a camera-phone im-
age. The algorithm is capable of detecting code markers
with arbitrary rotation, tilting and perspective distortion. It
can also read the marker bits by mapping the image coor-
dinates to the code marker coordinates. The algorithm can
effectively recognize visual code markers in a time-efficient
manner, without making any assumptions about the charac-
teristics of the camera used for capturing the image.

1. Introduction

The task given for the project was to recover positions
and information contained in an arbitrary number of code
markers (between 1-3) in an RGB image taken by a cell
phone camera. Through the work done, a novel algorithm
was devised to accomplish this task. The algorithm system-
atically locates the code markers in the image and extracts
the necessary data strictly avoiding false positives. A brief
explanation of algorithm steps is given below.

The first step of the algorithm is to recover candidate re-
gion locations in the RGB image where the guide bars and
the corner elements may be located. This is done using a
procedure which involves edge-detection for finding the re-
gion boundaries and the use of an algorithm which finds and
fills in the innermost contours in the edge detection output.
Then these regions found, are systematically filtered until
only the guide bars and corner elements for the code mark-
ers are left.

The first elimination step looks at the eccentricity of all
the images and classifies candidates for long and short guide
bars. Then the next step looks at the area ratios and the dis-
tances of all possible long and short bar candidate pairs and
eliminates the pairs which don’t match the specific crite-
ria given. Then possible corner element locations for the
pairs which have passed these verification steps are calcu-
lated and these corner elements are checked for eccentric-
ity and area constraints. In this last step also the angle be-

tween the long and short bars is checked to eliminate the
pairs composed of two in line bars.

After the above steps, it is assumed that the only candi-
date pairs left are the long and short guide bar pairs for the
code markers in the image. Their locations and also the lo-
cations of corresponding corner elements are used to subject
the code marker regions in the image to an inverse projec-
tive transformation. Lastly, the output of the transformation
is processed to obtain the data bits in each code marker.

The algorithm thus finds an arbitrary number of code
markers in an RGB image and returns the data bits con-
tained with the marker positions in the image.

2. Algorithm Steps

The input to the algorithm is an RGB image of arbitrary
size. This RGB image is processed to extract the positions
and the bit information contained in the code markers, by
the algorithm implemented whose steps are discussed be-
low.

2.1. Generating the Initial Gray Scale Images

As the first step of the algorithm, we generate a gray
scale image from the RGB input image. As will be dis-
cussed below, an edge detection algorithm is used to process
this grayscale image and the edge-detected images will then
be used to define the candidate regions in the image. So
it is desired that the output of this grayscaling and edge-
detection process has clear and connected edges. To ac-
complish this, two different grayscale images are generated
from the RGB image. The first one is the average of the
green and red channels and the second one is the average of
all three RGB channels.

The average of only the green and red channels is
needed, since the blue part of the image is a low-pass image,
it contains less information and using it for edge detection
may lead to errors blurring the average. However if only
these two channels are used, there may be cases where the
edges are not connected, since all the image information is

RGB Image

Convert RGB to grayscale
 (R+G)/2

Convert RGB to grayscale
 (R+G+B)/3

Canny Edge
 Detection

Canny Edge
 Detection

+

 Iterative Region Filling
for Finding Innermost Closed Contours

Region Labeling

Calculation of the Region Eccentricities

Determination of long-guide bar candidates Determination of short-guide bar candidates

Determination of long-short guide
 bar pairs using area ratios

Determination of long-short guide
 bar pairs using centroid distances

Finding the common pairs

Localization of upper-right
 cornerstones

Localization of lower-left
 cornerstones

Localization of upper-left
 cornerstones

Pair elimination by eccentricity
 thresholding on cornerstones

Pair elimination by area ratio
thresholding on cornerstones

Determination of long-short guide
 bar pairs using orientation angles

Inverse Projective Transformation

Thresholding

Reading the bits

Figure 1. Flow diagram of the algorithm.

2

not used. Thus it is desired to use the information in the blue
channel, while making sure that its low-pass characteristic
does not cause any blurring and errors in the final output.

As a consequence of the above observations, it was de-
cided to generate two separate grayscale images and feed
them separately to an edge-detection algorithm.

2.2. Edge Detection

The two grayscale images are edge detected by a canny
edge-detection algorithm. It is expected that each edge-
detected image will contain information required for the
construction of a binary image having closed contours
around the marker guide bars and corner elements. For im-
ages having dim lighting conditions in the region where a
marker is placed, the information in the first edge detection
output will be the most useful. However when any contour
in the first edge detection output is not closed, the low-pass
characteristic of the second grayscale image will cause the
edge-detection output to have a closed contour for that re-
gion. Thus to combine all the information in the two edge-
detection output images, another binary image is generated
as the output of an entry-wise OR operation between the
two edge detection outputs.

This binary image is expected to contain closed contours
around the guide bars and the corner elements and will be
used as an input to the algorithm for finding the innermost
closed contours and define the binary regions to be used for
candidate selection and elimination.

2.3. Finding the Innermost Closed Contours

After the binary image with edges around the guide bars
and corner elements is obtained, it is required that the inner
pixels of the contours corresponding to these regions are
filled. If it is assumed that no closed contour has another
closed contour containing it, this is a very trivial task. The
image can be filled with ones starting from the corner of the
image and then can be negated causing every closed contour
to be filled. Here note that we can assume there is not any
region boundary corresponding to exactly the corner where
we start the filling operation. However, in general the region
to fill may be bounded by closed contours that are contained
in an arbitrary number of other closed contours. Thus the
requires task is to fill in only the innermost closed contours
in the binary image. This is accomplished by an algorithm
which uses an iterative procedure to number every region
according to the number of closed contours containing its
boundaries.

The algorithm starts with filling the binary image start-
ing from the upper-left corner. Then at every step, a new
image is constructed by filling the negated output of the pre-
vious step. This procedure makes sure that a region is not

a)

b)

c)

Figure 2. Output images for some selected
steps of the algorithm. a) The output of the
first fill operation b) The output of the sec-
ond fill operation. Note that the filled area
has reached the inner regions c)The summed
image

3

filled until the algorithm reaches its innermost boundary.
The algorithm stops this iterative generation of filled im-
ages once the whole image is filled with ones, which means
that every innermost closed contour in the binary image has
been reached. Now if the resultant filled images from all
steps are summed, the value for any region in the summed
image will be the number of closed contours containing it.
Thus the regional maxima of this image is found, only the
innermost contours will be retained. As a result, this al-
gorithm finds the innermost closed contours independent of
the number of contours containing it in the binary input im-
age. Examples for the output images for each can be seen
in Figure 2.

The output of this procedure is expected to contain the
guide bars and corner elements for the code markers. How-
ever there will also be other closed contours in this binary
image. These are eliminated in processes described in the
following sections.

2.4 Determination of Code Marker Candidates

After the binary image is formed, we need to do region
labeling in order to find the separate set of points. We expect
to have the long and short guide bars and corner elements
among the labeled regions. Once the labeling is done, we
need to determine the long and short guide bar candidates
that can be used to localize a code marker as these bars have
a high eccentricity, i.e. the ratio of the major axis length
to the minor axis length is large. Namely, for long guide
bars this ratio should theoretically be about 7 and about 5
for short guide bars. The ratio is found by exploiting the
second-order moments [1]. The second order moments for
a region of pixels Z can be expressed as,

μxx =
1
|Z|

∑
(x,y)∈Z

(x − x̄)2, (1)

μyy =
1
|Z|

∑
(x,y)∈Z

(y − ȳ)2, (2)

μxy =
1
|Z|

∑
(x,y)∈Z

(x − x̄)(y − ȳ), (3)

where x̄ and ȳ are coordinates of the center of gravity, com-
puted as the mean of the point coordinates in the region.
The major to minor axis length ratio, ρ, is given by,

ρ =

√
max(d, f)
min(d, f)

, (4)

where d =
μyy

4μxxμyy − μ2
xy

, (5)

f =
μxx

4μxxμyy − μ2
xy

. (6)

After the eccentricities are found, we can threshold the re-
gions to yield long and short guide bar candidates sepa-
rately. However, the bars might not be lying along the hor-
izontal or vertical axis. There could be a perspective dis-
tortion. All these effects will cause the ratios to deviate
from the theoretical values. Considering that this is the first
step of candidate elimination, the thresholding is performed
within a lenient window, ±4, around the theoretical values.

Once candidates are found, the number of possible pair-
ings between these two sets (long and short) need to be re-
duced further using several other geometric properties. For
a given long-short guide bar pair, we first look at the ra-
tio of the areas, which has to be around 7/5. The areas
of the regions can be computed by region counting. Dur-
ing the training of the algorithm, it was observed that there
can be deviations from the theoretical value when perspec-
tive distortion is present. Therefore, a window of values ,
±0.3, around the theoretical value is assumed to be accept-
able. This eliminates the long-short guide pairings between
regions of essential size difference.

The ratio of the areas does not provide information on
how close the possible guide bar pairs are to each other,
which is determined when the distance between the cen-
troids is computed. The centroid of each region is the cen-
ter of gravity. Assuming that the pair we are investigating is
the correct long-short guide bar pair, the ratio of the distance
between the centroids of long and short guide bar regions to
the length of the major axis length of the long guide bar re-
gion should be a constant, approximately 6/7, as shown in
Figure 3. Of course, this analysis assumes that the orienta-
tion vectors of the long and short guide bars are perpendic-
ular to each other. Again, possible distortions in the image
will cause the actual angle between the two to deviate from
a perfect 90o. Therefore, a wider range of values, ±0.35,
for the ratio should be accepted.

Although the angle between the orientations of the long
and short guide bar pairs may vary, we do not expect them
to be parallel to each other. This observation can be used
to eliminate false-positive pairs that have the right eccen-
tricity, area ratios and are close enough in space to pass the
centroid test, but actually are nearly parallel to each other.
To figure out the angle, we need to determine the individ-
ual orientation vectors first. Without a reference point, we
cannot uniquely determine the vectors pointing toward the
corner elements as there are two possible solutions facing
opposite directions for a specific orientation in space which
are given by,

v = ∓
(− sin(α)

cos(α)

)
, (7)

where α =
1
2

arctan
(

2μxy

μxx − μyy

)
. (8)

To remove the ambiguity in the direction, we find the

4

5.5 units

2.5 units

~
 6

 u
ni

ts

Figure 3. The distance between the centroids
of the long and short guide bars in a given
code marker is roughly 6 units. Therefore the
ratio of this distance to the length of the major
axis of the long guide bar is a constant, 6/7.

extrema points for both regions and calculate the pair of
points, one taken from each region, that yield the mini-
mum Euclidean distance. Then we take the extrema point
of the short guide bar that belongs to the pair with minimum
Euclidean distance and we form a reference vector by taking
the difference between the centroid and the extrema point as
displayed in Figure 4. The actual orientation vector for the
short guide bar is the one lying at an acute angle with this
reference vector. The orientation vector for the long guide
bar is found in the exact same manner. Once the unit ori-
entation vectors are found, the cosine of the angle between
them should be equal to the dot product of the vectors. By
placing a threshold on the values of the dot product, i.e. its
absolute value must be within [0, 0.9], we can eliminate the
nearly-parallel pairs.

2.5. Localization of Corner Elements

After the determination of possible long-short guide bar
pairs using thresholding on area ratios, centroid distances
and orientation angles, the next step is the localization of the
3 corner elements corresponding to each -possible- long-
short guide bar pair. This is done using the corrected ori-
entation vectors which were derived in the previous section
and illustrated in Figure 4. If we denote the corrected ori-
entation vectors for the long and short guide bars as v l

i and
vs
i for the ith pair respectively, then the estimated centroids

for the upper right and lower left corner elements are given
by :

Top Right

Right Top

Right Bottom

Bottom RightBottom Left

Left Bottom

Left Top

Top Left

WrongWrong
DirectionDirection

RightRight
DirectionDirection

ReferenceReference
Extrema

a)

b)

Figure 4. Illustration of the retrieval of the ori-
entation vector. a) There are eight extrema
points for any given connected region. b)
The right orientation vector (red) makes an
acute angle with the reference vector (green),
whereas the other possible solution (blue)
makes an obtuse angle.

ĉur
i = cl

i +
5
7
majliv

l
i (9)

ĉll
i = cl

i +
8
5
majsiv

s
i (10)

where ĉur
i is the estimated centroid of the upper right corner

element, ĉll
i is the estimated centroid of the lower left cor-

ner element and majli and majsi are the major axis lengths.
The real centroids are found by going back to the initial
black&white labeled image and looking at a neighborhood
of ±pur

i and ±pll
i pixels around each estimated centroid,

where

pur
i =

√
Al

i/7 (11)

pll
i =

√
As

i/5 (12)

5

Figure 5. The long guide bar, short guide bar
and corner elements corresponding to the
markers in the image

and Al
i and As

i denote the areas of the long and short guide
bars. The region that has the most number of pixels in this
area is taken to be the upper right and lower left corner ele-
ments, and their real centroids are obtained from the known
black & white labeled image. Using those centroids, the
centroid of the upper left corner element is found by :

ĉul,1
i = cll

i +
10
7

majliv
l
i (13)

ĉul,2
i = cur

i +
10
5

majsiv
s
i (14)

ĉul
i =

ĉul,1
i + ĉul,2

i

2
(15)

Again, we look at a neighborhood of ±pur
i pixels to find the

real centroid of the upper left corner element.
The resulting three corner elements for each pair are

checked for eccentricity and area. Since we expect the cor-
ner elements to be close to a circle, the eccentricity thresh-
old is set to 2. The ratios of the areas of each corner element
to the area of the long guide bar A l

i is forced to be lower
than 2/7. Any long - short guide bar pair that has a corner
element which has a greater value of eccentricity or area
than the specified thresholds is rejected and not considered
as a part of a marker. The guide bars and corner elements
belonging to the marker in our training image is shown in
Figure 5.

2.6. Inverse Projective Transformation

Knowing the label of each of the elements in the image,
it is now possible to extract the markers individually from

the scene. For this purpose, the extrema points correspond-
ing to the guide bars and the corner elements are taken and
the maximum and minimum values of the x and y coordi-
nates of these extrema are used as the corners of the bound-
ing box of that marker. Since the marker is viewed from an
arbitrary angle, it is necessary to perform coordinate trans-
formation so that the image has the appropriate viewing an-
gle and scaling for decoding purposes. Regarding the na-
ture of the way the image is taken, this transformation of
the marker from the image space to the code space is mod-
eled as a projective transformation. Projective transforma-
tion describes the perceived positions of the objects when
the point of view changes. In this transformation, straight
lines remain straight but parallel lines converge toward van-
ishing points. The projective transformation is defined as
: ⎡

⎣ u′

v′

w′

⎤
⎦ = T−1 ·

⎡
⎣ x

y
w

⎤
⎦ (16)

Assuming

T−1 =

⎡
⎣ A B C

D E F
G H I

⎤
⎦ (17)

u =
u′

w′ (18)

v =
v′

w′ , (19)

we get

u =
Ax + By + C

Gx + Hy + I
(20)

v =
Dx + Ey + F

Gx + Hy + I
, (21)

where (u, v) are the coordinates in the code space and (x, y)
are the coordinates in the image space. The nine elements
of this projective transformation matrix are found by the
cp2tform function in MATLAB. This function takes 4 in-
put points that contain the x and y coordinates in the image
space and 4 base points that correspond to these input points
in the code space. The points used for finding the projective
transformation and their corresponding code space coordi-
nates are summarized in Table 1.

After the transformation is found, it is applied to the cor-
responding box extracted from the grayscale image contain-
ing the marker. In order to find a better estimate of the indi-
vidual bits, the resolution of the resulting code-space image
is increased by scaling up the code space coordinates fed
into the cp2tform function. The original and transformed
marker images are shown in Figure 6.

6

Definition Image Space Code Space
Coordinate Coordinate

Centroid of Upper
Left corner element cll

i (0.5, 0.5)
Centroid of Upper
Right corner element cur

i (0.5, 10.5)
Centroid of Short
Guidebar cs

i (10.5, 8.5)
Centroid of Lower
Left corner element cll

i (10.5, 0.5)
Centroid of Long
Guidebar cl

i (5.5, 10.5)

Table 1. Selected image space and corre-
sponding code space points.

a) b) c)

Figure 6. The results for projective transfor-
mation and thresholding. a) The initial marker
cropped from the image using extrema points
b) Marker image after projective transforma-
tion c)Result of thresholding

2.7. Thresholding and Reading the Bits

After getting the high resolution code-space marker, a
thresholding is applied to convert this image to binary. For
this purpose, the mean value of the gray-scale marker image
is used as the threshold (Figure 6). Possessing the knowl-
edge of the coordinates of the center of each of the bits, a
±p/3 pixel neighborhood of each bit is considered, where
p is the pixel size of one bit, i.e. it is equal to the scaling
factor used to scale up the code space coordinates. In this
neighborhood, the majority value (0 or 1) is assigned as the
value of the corresponding bit of the marker. The resulting
binary image is then converted to a vector and returned as
the code to the user, along with the centroids of the upper
left corner elements.

3. Conclusion

The algorithm can successfully detect the locations of
the upper-left corner elements of the markers in the training

set images. Furthermore, the bits in the code marker are
read without any error. The processing time for individual
images are each under 1 min, with the total processing time
for all 12 images being about 95 seconds.

Although the algorithm seems to be working fairly well,
there are possible improvements. The algorithm relies on
the edge detection routine to find the candidates for long
and short guide bars and corner elements. Because we try
to find the innermost closed contours using the edge infor-
mation, the edge boundaries around the bars and the corner
elements need to be closed. In cases where there is a dis-
continuity in the edge, a dilation scheme can be utilized.
However, it is hard to determine the morphological opera-
tor to be used for dilation as we do not want to arbitrarily
increase the thickness of the edges, which in turn will shrink
the size of the resulting labeled regions.

Another consideration is the detection of the bits in the
code marker. We use a simple thresholding routine to deter-
mine black and white pixels. In cases where a vast majority
of the 83 pixels are of one type, thresholding by the mean
value might yield false readings for some pixels. Nonethe-
less, tests up-to-date show that the thresholding scheme is
quite robust.

The visual code marker detection algorithm can detect all
code markers in a camera phone image without any false-
positives or repeats, within under 1 minute. Moreover, the
code bits in the marker are detected without any error. With
the addition of the mentioned improvements, the algorithm
shows promise to be a fast and robust detection scheme for
visual code markers.

Appendix

Each group member equally participated in the imple-
mentation and testing of the algorithm.

References

[1] R. C. Veltkamp and M. Hagedoorn: State of the Art in
Shape Matching. Principles of Visual Information Retrieval,
Michael S. Lew (Ed.), Series in Advances in Pattern Recog-
nition, Springer, 2001.

[2] M. Rohs:Real-World Interaction with Camera-Phones,Proc.
UCS., 2004

[3] Goshtasby, Ardeshir:Piecewise linear mapping functions for
image registration, Pattern Recognition, Vol. 19, 1986, pp.
459-466

[4] Goshtasby, Ardeshir:Image registration by local approxima-
tion methods, Image and Vision Computing, Vol. 6, 1988,
pp. 255-261

7

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

