
Edward Kim

Gabriel Molina

EE368 Final Project

Due: 2 June 2006

Group # 19

Marker Code Detection

Introduction

The detection of marker codes allows users to receive even more content than before

from their mobile devices. Using a simple point and shoot interface, a user can receive

detailed information about an interesting object in a convenient and concise form.

In this paper, we propose and implement an algorithm based on MAP decoders and

region-pairing to detect cell phone marker codes. We have been provided a training set

of 12 training images, and will attempt to detect 100% of the bits encoded in each image

without error.

E368. MARKER CODE DETECTION 2

Algorithm

The proposed algorithm operates in several phases. The first 4 phases are preprocessing

steps to eliminate unlikely pixels before the algorithm attempts detection. Here is a

summary of each phase:

1.1 Map Decoder

The system uses two simple MAP decoders which have been trained using the data from

11 of the 12 training images. One MAP decoder is computed in RGB color space, and

the other MAP decoder is computed in grayscale (i.e. HSI intensity space). By using two

MAP decoders, we hope to achieve a simple rough mask of the marker pixels which will

be refined in later steps.

Phase 1:
MAP Decoder

Phase 2:
Region Counting
Localized Thresholding

Phase 3:
Region Counting
Region Sifting
Region Removal

Phase 5:
Detection

Phase 4:
Region Pairing

Figure 1.1: Block diagram of detector.

E368. MARKER CODE DETECTION 3

 The process for creating the MAP decoder is the same for both RGB and grayscale.

First, masks must be manually created which identify the desired pixels in each training

image. Then, conditional probabilities are estimated using the following formulas:

pixelsmar

mari
i N

n
Cp

ker_

ker_)pixelmarker |( (1.1)

 Where ker_ marin is the number of pixels  iiii bgrC  (or  ii IC ) found within

the marker. Similarly:

background

backgroundi
i N

n
Cp _)pixelbackground|( (1.2)

 Where backgroundin _ is the number of pixels of color iC found in the set of background

pixels. To implement the MAP decoder, marker pixels are defined as all pixels such that:

)pixelbackground|()pixelmarker |(ii CpCp  (1.3)

In other words, a pixel is categorized as a marker pixel if its frequency within the marker

tends to be greater than its frequency in the background region.

1.2 Combination of MAP Decoders

The two MAP decoders both worked to a certain extent, but each had the same problem:

oftentimes either decoder would be prone to throwing out too much information. The

resolution to this problem was to combine the results of the two decoders. The resulting

image consists of pixels which both decoders agree are not marker pixels. Inverting this

image creates a conservative but fairly accurate mask of the marker pixels.

E368. MARKER CODE DETECTION 4

Figure 1.2

(T) Original image

(M) MAP image

(B) Inv. Mask Result

E368. MARKER CODE DETECTION 5

2.1 Region Counting and Localized Thresholding

The next step in the algorithm is to refine the remaining pixels into shaped regions that

can subsequently be sifted to identify the locations of the markers. The first step in this

process is to remove the ‘halo’ surrounding each black region in the marker.

 First, each contiguous region in the mask is counted and labeled. Then, for each

region the mean gray value is calculated. All pixels above this mean gray-value are

removed, which has the effect of removing the lightest pixels, which tend to clump

around the edges (that is, the ‘halo’). Thus, we are left with an image where the marker

regions are separate.

 Finally, a mask is formed of the resulting ‘halo’ cleaned image.

E368. MARKER CODE DETECTION 6

Figure 2.1

(T) ‘Halo’ image

(M) ‘Halo’-clean

(B) ‘Clean’ mask

E368. MARKER CODE DETECTION 7

3.1 Region Counting and Region Sifting

Now that the image is nicely segmented into distinct regions, it is time to detect and

remove regions that do not match known characteristics of the marker alignment bars.

First, the image labels all regions with a label i and stores the pixel count for each region

iR . With this information the algorithm can begin to discern which regions are most

likely the marker alignment bars.

3.2 Sifting Criteria

3.2.1. Size

First, all regions outside a certain size range are rejected. Specifically, very large regions

and very small regions are not likely to be the alignment bars. The sifting thresholds are

set to eliminate small regions less than 20 pixels in area, and large regions greater than

1000 pixels in area.

3.2.2. Aspect Ratio

The algorithm makes use of the fact that the aspect ratio of the alignment bars is fixed,

and is a very robust and selective method of removing unlikely regions.

For each region iR , the algorithm calculates the centroid:

 









iN

i

i

i y

x

N
c

1

1
 where

















i

i

i R
y

x
ε (3.1)

E368. MARKER CODE DETECTION 8

Then, the algorithm forms a matrix A of the points
















 c-

i

i
i y

x
z for the region iR :

 TNi
zzA ...1 (3.2)

which is then decomposed using SVD:

 VDUAsvd ,,)( (3.3)

The resulting matrix V gives the two normalized principal axes of the region, and the

diagonal matrix D gives the resulting gain coefficients in those directions. The aspect

ratio for region iR is

22

11)(
D

D
AR i  (3.4)

Using equation (3.4), every region can be associated with a good approximation of its

aspect ratio. Since the aspect ratio of the alignment bars is fixed at 5 and 7, we can

remove all regions that do not have an aspect ratio close to this range. The effect is to

remove most undesired regions except those with an aspect ratio similar to the alignment

bars.

3.3 Region Removal

The image is scanned once more, and all regions that do not fulfill the above criteria are

removed from the image. The result is an image with only a few remaining regions,

including the alignment bars. Occasionally, the marker’s alignment bars will be the only

regions remaining.

E368. MARKER CODE DETECTION 9

Figure 3.1

(T) Mask image

(M) Coded regions

(B) After removal

E368. MARKER CODE DETECTION 10

4.1 Region Pairing

The remaining regions in the output image have the highest probability of being the

alignment bars. The region pairing algorithm uses the geometric ratios of the marker

alignment bars in order to detect which other alignment bars might be paired with it.

4.1.1. Geometric Considerations

Figure 4.1. Normalized distance/angle

diagram between centroid of a 7-region

(left) and a 5-region (top).

Knowing the ratios of the distances, we

can find the expected angle and distance

from the centroid of a 7-region to the

centroid of a 5-region. The distance and

angle are:

regionregion LLd 












 7354.

14

5

14

9
22

(4.1)

degrees945.60
7354.

14/9
arcsin 








(4.2)

E368. MARKER CODE DETECTION 11

Figure 4.2: Four candidate areas (highlighted in yellow) to check for pairing regions.

4.1.2. Algorithm

The algorithm steps through each region and checks whether the centroid of another

region exists in the above candidate areas. If a region is found and the angle between the

regions is high enough, it means there is a high probability that both regions form a 7-

and 5-region combination. All regions that do not have a paired region can be removed,

further simplifying the detection process.

 The algorithm has given good results thus far. Many of the remaining garbage regions

are removed by this criterion. The algorithm passes pair data to the detection step in the

following form:

























region

region

region

i lbl

lbl

P

7

5

7


,  Npairs PPM ...1 (4.3)

E368. MARKER CODE DETECTION 12

Figure 4.3

(T) Mask image

(M) Centroid detection.

Centroids are white squares.

Yellow squares are detection

areas for a region. White

squares overlapping yellow

squares means the two

regions have been paired.

(B) After removal of

unpaired regions (some

regions appear gray because

image values are coded by

region label).

E368. MARKER CODE DETECTION 13

(a) (b)

(c) (d)

Figure 5.1: 4 possible rotations of marker
alignment bars. (a) 0o (b) 90o (c) 180o (d)
270o clockwise orientation

5. 1 Detection

5.1.1. Orientation and Alignment

Using the eigenvectors from the SVD expansion as in Section 3.2.2, the marker’s angle

of rotation is calculated with respect to the x- or y-axis. The algorithm then rotates the

image using the nearest neighbor approximation, which puts the two alignment bars in a

vertical and horizontal orientation. However, there is some ambiguity in the orientation

because there are four possible orientations of the code marker: 0o, 90o, 180o, and 270o

clockwise rotation, as illustrated by Figure 5.1.

The algorithm detects which of the

four orientations the marker is in by

determining the lengths of the

horizontal and vertical bars. If the

horizontal bar is longer than the

vertical bar, then the rotation is

either 5.1b or 5.1d. Then, if we

detect that the horizontal bar is to the

right of the vertical bar, we know the

rotation is 5.1b. If we detect that the

horizontal bar is to the left of the

E368. MARKER CODE DETECTION 14

vertical bar, the rotation is 5.1d. Similarly, if the vertical bar is longer than the horizontal

bar, the rotation is either 5.1a or 5.1c. If the horizontal bar is above the vertical bar, the

rotation is 5.1c, and if the horizontal bar is below the vertical bar, the rotation is 5.1a.

 The algorithm’s next task is to roughly locate the 3 alignment bits at the corners of the

visual code marker using the calculated lengths of the alignment bars. Since the two bars

are 5- and 7- bits long, the algorithm can determine the number of pixels per bit both

vertically and horizontally. This is important because the pixels per bit in the horizontal

direction can differ from the pixels per bit in the vertical direction if the camera imaged

the marker at a non-perpendicular angle. Therefore, the algorithm must calculate these

ratios separately. Knowing the relative bit-length of the 3 alignment bits in relation to the

alignment bars, the algorithm can estimate the location of the alignment bits.

 The location of the alignment bits is only an estimate used to place an upper and lower

bound on the location of the alignment bits. Further measures must be taken to find the

exact location of the alignment bit. Using the upper and lower bound on the location of

the alignment bit, the algorithm performs a region count of all regions in this bounded

area and calculates the centroid of each region. If there are multiple regions in these

bounds, only the region with the most extreme centroid is kept. For example, if the

algorithm is searching for the bottom-right corner alignment pixel, it keeps the region

whose centroid is closest to the bottom-right. In this manner, the algorithm can

determine the exact location of each of the 3 alignment bits.

E368. MARKER CODE DETECTION 15

Figure 5.2b shows a mask of the upper and lower bounds of the location of the 3

alignment bits. Figure 5.2d shows the calculated centroids of the 3 alignment bits.

Figure 5.2: Detection of alignment
bits. (a) A thresholded image of the
code marker. (b) A mask of the upper
and lower bounds of the location of
the alignment bits. (c) Regions within
these bounds. (d) Centoid calculation
of the alignment bit. The centroids
are denoted in this image by a single
white pixel in the middle of the
alignment bit

(a)

(b)

(c)

(d)

E368. MARKER CODE DETECTION 16

5.2 Code Marker Skew and Size Detection

With the locations of the 3 alignment bits determined, the algorithm calculates a more

precise estimate of the marker size and the horizontal and vertical pixel spacing between

bits. The horizontal bit spacing is determined by calculating the distance between the left

and right alignment bit and dividing by 10, since there are 10 bits between the alignment

bits. Similarly the vertical bit spacing is determined by calculating the distance between

the left and right alignment bit and dividing by 10.

Depending on the angle that the camera images the marker, the horizontal and

perpendicular alignment bars may not necessarily be perpendicular to each other. They

can have a slight skew, which can be accounted for using the relative locations of the 3

alignment bits. For example, the lower right alignment bit in Figure 5.2d is lower than

the lower left alignment. This distance denotes the vertical skew of the code marker.

The lower right alignment bit is also to the left of the upper right alignment bit. This

horizontal distance denotes the horizontal skew of the code marker. The algorithm

accounts for the size and skew of the code marker and creates a constellation of the center

points of each of the bits as shown in Figure 5.3.

E368. MARKER CODE DETECTION 17

5.3 Bit Extraction

With the location of each of the bits determined, the algorithm performs a check to verify

that the image is indeed a code marker. Of the 121 bit locations, 38 have known values.

12 bits contain 1 values and are used for the alignment bars, 3 bits contain 1 values and

are used for the alignment bits, and 23 bit contain 0 values and are used for borders

around the alignment bars and bits. To ensure that the image is a code marker, the

algorithm checks the calculated locations of the alignment bars and bits (15 bits total),

and ensures that the bits for these regions are set. Then, the algorithm extracts the bit

values of the 83 information bits.

Figure 5.3: Detection of
alignment bits. (a) A thresholded
image of the code marker. (b) A
mask of the upper and lower
bounds of the location of the
alignment bits. (c) Regions within
these bounds. (d) Centroid
calculation of the alignment bit.
The centroids are denoted in this
image by a single white pixel in
the middle of the alignment bit

(a)

(b)

E368. MARKER CODE DETECTION 18

6. Results

In the end, our algorithm was hampered by poor performance in the detection stage. The

detection process was not very robust when applied to the varied shapes and sizes of the

image markers, and results were inconsistent at best.

 One issue that we found particularly difficult was handling the perspective warping that

occurs when a photo is taken at an off-camera angle. We were able to address this issue

using a quadrilateral-to-quadrilateral mapping function, which allowed unwarping of the

marker image. However, this occurred at a late phase in development and we did not

have much time to consolidate our detection code and make it robust. In any case, we

will present some results for our image processing algorithm.

E368. MARKER CODE DETECTION 19

6.1.1. Pre-Processing Results

Training
Image

Markers
Present

in Image

Correct Pairs
Passed

 to Detection

Total Pairs Passed to
Detection

1 1 1 1
2 2 2 3
3 3 3 3
4 1 1 6
5 3 3 5
6 1 1 1
7 2 2 2
8 1 1 1
9 3 3 4
10 3 3 4
11 1 1 1
12 2 2 2

The pre-processing Phases 1-4 passed a total of 33 region pairs to the detector. Of those

33 region pairs, 23 pairs were alignment bars. This means that the pre-processing

achieves about 70% accuracy in passing region pairs to the detector. Also, an important

statistic is that all marker alignment pairs in the image were passed to the detection

phase—that is, no markers were dropped during pre-processing for all of the training

images. Thus, we were very satisfied with our pre-processing results.

E368. MARKER CODE DETECTION 20

6.1.2. Detection Results

Training Image Origins Detected Bits Correct
1 1/1 83/83
2 2/2 156/166
3 3/3 246/249
4 err 0
5 3/3 247/249
6 0/1 41/83
7 1/2 141/166
8 1/1 74/83
9 3/3 188/249
10 1/3 78/249
11 1/1 83/83
12 0/1 36/83

Thus, as is apparent from the above table, while our ability to pre-process and sort the

regions is very good, our ability to decode the region markers is unreliable and could use

more refinement. Most of our detection problems were due to warping distortion in the

image, which made it difficult to correctly identify the corner points. In any case, our

detector still managed to detected many of the bits properly, and did a decent job of

detecting the marker origin.

E368. MARKER CODE DETECTION 21

Appendix—Activity Log

 We both spent around 60-70 hours on this project, particularly at the end, as we were

having great difficulty with the detection phase of our code. The break down of work is

as follows:

Edward Kim:

 Created first skeleton of image processing system (12 hours)

 Worked thoroughly to author, test, and debug all aspects of detection phase (50-

60 hours, >1000 lines of code)

 Writing Paper (1-2 hours)

Gabriel Molina:

 Spent majority of time developing pre-processing (Phase I-IV) and making it

robust (55-65 hours)

 Broke and re-conceptualized Phase I-IV numerous times

 Helped develop methods for overcoming detection stage difficulties (10-12 hours)

 Reading Papers/Ideas Research (2-3 hours)

 Writing Paper (2-3 hours)

