
EE368 Class Project, Spring 2005-2006
Visual Code Marker Detection

Chien-Yu Chen
chienyu@stanford.edu

I. INTRODUCTION

In this paper, we present a method to detect special visual

code markers. Fig.1 shows an example of the visual code
markers. The visual code markers we are considering have
two fixed guide bars and three fixed cornerstones. Our
method uses these elements to locate the visual code markers
and then read the codes on markers.

Fig 1. An example of a visual code marker.

Our method is based on the method proposed in [1]. It

firstly looks for the principal guide bar candidates. For each
candidate, it looks for its correspondent secondary guide bar.
Next, for each pair of guide bars, it looks for its three
correspondent cornerstones. After a pair of guide bars and
three cornerstones are located, we calculate the transformation
between the visual code marker coordinate and the image
coordinate and find the mapped position on the image plane
for each position on the marker plane.

Since the images are captured by cell phones, preprocessing
is necessary for performing the detection well. Our method
employs an adaptive thresholding proposed in [2] to binaries
the original image. We made some modifications to achieve
better performance on this specific application.

II. PREPROCESSING

The original images are color images captured by cell
phones but the input images for marker detection in our
method are black-white images. Firstly, an original color
image is converted to a grayscale image by averaging the
green and the red components of the original image because
green and red components dominate the brightness more than
blue component. After having a grayscale image, we employ
an adaptive thresholding [1] to get the binarized image.

Given a grayscale image, we compute the moving average
 of the grayscale values at each position (x,y) where n is

the sequence number of a pixel that depends on the direction
we go along. When we go from left to right and from top to
bottom, we have

)(ng

ywidthimagexn +⋅−= _)(1 for pixel (x,y)

When we go alternately from right to left and from left to

right, we have

otherwise _
mod while_)(

1
021

+−⋅=
=+⋅−=

ywidthimagexn
xywidthimagexn

The moving average is computed as)(ng

)1(5.0)1(

),(11)1()(

−⋅=

+⎟
⎠
⎞

⎜
⎝
⎛ −⋅−=

sg

yxim
s

ngng

im(x,y) is the grayscale value of pixel (x,y), n is the

sequence number of pixel (x,y) and s is the width of region to
be considered having similar lighting conditions. The adaptive
thresholding usually has better results when s is 1/8 of the
image width.

To binarize the grayscale image in alternate directions, we
need to take the moving average of previous line into consider
to reduce the “every-other-line effect” mentioned in [2].

Therefore, when n is in alternate directions,

2

)
2
_()(

),(

widthimagengng
yxh

−+
=

 1

 (a) (b)

(c) (d)

Fig 2. Results of adaptive thresholding.
(a) original color image. (b) grayscale image. (c) resulting
image with adaptive thresholding in left-to-right direction. (d)
resulting image with adaptive thresholding in alternate
directions. Notice that the text below the marker can only be
seen in (d).

and when n is in left-to-right direction,

)(),(ngyxh =
Finally, we binarize the image as

otherwiseyxbw
p/s h(x,y) im(x,y) yxbw

0),(
 if1),(

=
⋅<=

p is a parameter that determines the percentage of values

larger than the moving average that is classified as 1. Notice
that our goal is to convert the black marker elements into
white objects.

Fig. 2 shows the results of one-direction adaptive
thresholding and alternate-direction adaptive thresholding.

Although [1] mentioned alternate direction reduced the
“every-other-line” effect, we can still see clear artifacts.
Therefore, after alternate-direction adaptive thresholding, we
apply a closing with a kernel [1;1] to the resulting image to
get rid of the effect.

III. VISUAL CODE MARKER LOCATING

Locating Pairs of Guide Bars
We label all the regions on the preprocessed image and use
regionprops function to calculate the area, the orientation of
the major axis, the length of major axis, the length of minor
axis, and the centroid of each region. A region with the ratio
of the length of major axis and the length of minor axis larger
than a number and smaller than another is considered a bar
candidate. In our method, a bar candidate has that ratio
between 3 and 12, is at least 30-pixel large, and its size is
larger than 0.6 times its major axis length times its minor

 (a) (b)

 (c) (d)

Fig. 3. Bar candidates and cornerstone candidates.
(a) grayscale image. (b) binarized image. (c) bar candidates.
(d) cornerstone candidates.

axis length. Fig.3 shows the results of bar candidate detection.
For each bar candidate, we estimate the position of the

secondary bar. Illustrated in Fig. 4, for a bar candidate i, there
are two positions where the secondary bar may be.

1)

))(cos(0.5_).(_
))(sin(0.5_).(_
inOrientatiowidthestyiCentroidyest

inOrientatiowidthestxiCentroidxest
××−=
××+=

2)

))(cos(0.5_).(_
))(sin(0.5_).(_
inOrientatiowidthestyiCentroidyest

inOrientatiowidthestxiCentroidxest
××+=
××−=

The est_width is the estimation of the width of a single grid

of the marker on image plane. The width is estimated by the
weighted average of the length of the major axis and the
length of the minor axis.

2
5/)(7/)(_ iengthMinorAxisLiengthMajorAxisLwidthest +

=

The angel between the principal bar and the secondary bar

is allowed to be within some range because of perspective
projection. Also, the length of the secondary bar is ideally 5/7
of the length of the principal bar. Thus, we then verify if there
is another bar candidate near the estimated location and it
must satisfy the following criteria:

1. The angel between the principal bar and the secondary bar

is between π/3 and 2π/3.

 2

Fig 4. Two possible positions of a principal guide bar.
The black bar is the principal guide bar we found and two grays bars indicate
two possible positions of the secondary guide bar.

)_(1.1
)7/5)_(

)_((.2

barprincipalengthMajorAxisL
barprincipalengthMajorAxisL

barsecondaryengthMajorAxisLabs

×<
×

−

After locating a pair of a principal bar and a secondary bar,

we calculate the actual orientations of the principal bar and
the secondary bar, PrincipalOrientation and
SecondaryOrientation which range between 0 and 2π as in
Fig. 5. PrincipalOrientation is the angel that the principal bar
is rotated around the bar’s down-most pixel on marker.
SecondaryOrientation is the angle that the secondary bar is
rotated around the bar’s right-most pixel on marker. We also
add the pair of bars into a set of validated pairs of bars.

Computing Southeast Corners

The southeast corner is the projected position of (11,11) in
the marker coordinate on the image plane. It is the intersection
of the principal bar i and the secondary bar j and the position
(x,y) is computed as

)(
)(

).(
).(

).(
).(

2

2

1

1

jrientationSecondaryO
irientationPrincipalO

yjCentroidy
xjCentroidx

yiCentroidy
xiCentroidx

=
=
=
=
=
=

β
α

11

22

1212

cotcot

tantan
100tan If

cottan
cottan

yxyx
else

yxyx

yyxx
y

×−+×=

×++×−=
<

+
+×+−

=

αα

ββ
β

αβ
αβ

Fig 5. PrincipalOrientation and SecondaryOrientation.
Notice that PrincipalOrientation and SecondaryOrientation
may not be same due to perspective projection.

It has different ways to compute x to avoid computation

error when tanβ is close to infinity.

Locating Northeast Cornerstones

We choose a region to be a cornerstone candidate if its ratio
of major axis and minor axis lengths is smaller than a value.
Because of low resolution and focus problem of cell phones,
some small cornerstones have small minor axis length so the
major axis length would be relatively large. Therefore, we use
several levels of rules to compromise this problem. We say a
region i is a cornerstone candidate if

otherwise 5.1)(
15)(when 2)(
5)(when 3)(
2)(when 5)(

≤
≤≤
≤≤
≤≤

iAxisRatio
iengthMinorAxisLiAxisRatio
iengthMinorAxisLiAxisRatio
iengthMinorAxisLiAxisRatio

Fig. 3 illustrates the results of cornerstone candidate

detection. For each pair of a principal bar, i, and a secondary
bar, j, we estimate the position of northeast cornerstone as

7/)(_
))(sin(5_).(_
))(cos(5_).(_

iengthMajorAxisLwidthest
isrientationPrincipalOwidthestyiCentriodyest
isrientationPrincipalOwidthestxiCentriodxest

=
××−=
××−=

Since the estimation is based on the principal bar, the

est_width used here should also be estimated based on the
length of the principal bar.

If there is a cornerstone near the estimated position, we
verify that its size is about the size of one grid of the marker
on image plane. The size of one grid of the marker on image
plane is estimated by the weighted average of the principal
bar area, area(i), and the secondary bar, area(j).

2
5/)(7/)(__ jareaiareaareagridest +

=

The cornerstone we found is valid for the pair of bars if its

area is smaller than twice est_grid_area. If we cannot find a

 3

valid cornerstone for a pair of bars, we discard the pair from
the validated pairs of bars.

Locating Southwest Cornerstones

The position of the southwest cornerstone of a pair of a
principal bar i and a secondary bar j is estimated as

0.5/)(_
))(cos(8_).(_

))(sin(8_).(_

jengthMajorAxisLwidthest
jrientationSecondaryOwidthestyjCentroidyest

jrientationSecondaryOwidthestxjCentroidxest

=
××−=
××+=

Since the estimation is based on the secondary bar, the

est_width used here is also estimated based on the length of
the secondary bar. Also, a valid southwest cornerstone should
be similar to the size of the estimated grid area and the size of
the northeast cornerstone we found. Therefore, with the same
est_grid_area in locating northeast cornerstones, a valid
southwest cornerstone is smaller than twice est_grid_area and
bigger than 0.2 × NE_cornerstone_ area.

Locating Northwest CornerStones

The position of the northwest corner is the most difficult
one to estimate. To simplify the estimation, we assume that
the angel between the image plane and the marker plane is not
large so that the projected marker on the image plane is
approximately a parallelogram. Therefore, we can estimate
the position of the northwest cornerstone (est_x,est_y) with
the position of the southeast corner, (x1,y1), the northeast
cornerstone, (x2,y2), and the southwest cornerstone (x3,y3).

132

132

_
_

yyyyest
xxxxest

−+=
−+=

The size of a valid northwest cornerstone should also be

about 1 and about the same as the sizes of the northeast and
the southwest cornerstones. Therefore, given a pair of a
principal bar i and a secondary bar j, a valid northeast
cornerstone cne, and a valid southwest cornerstone csw, a
cornerstone candidate c is a valid northwest cornerstone for
the marker if it is near the estimated position and it satisfies
all of the following criteria:

1. The area of c is smaller than 1.5 ⋅π⋅(dist(c,cne)/20)2

2. The area of c is smaller than 1.5 ⋅π⋅(dist(c,csw)/20)2

3. The area of c is smaller than 4 times the area of cne and 4
times the area of csw

4. The area of c is larger than 0.25 time the area of cne and
0.25 times the area of csw
where dist(c1,c2) is the distance between the centroids of
c1 and c2.

Criteria 1 and 2 are used to eliminate the cornerstone
candidates that are too close to the northeast cornerstone or
the southwest cornerstone. The distance between the
northwest cornerstone should be large enough to fit in 10

 (a) (b)

 (c) (d)

Fig. 6. Result of marker detection.

(a) original image. (b) bar candidates. (c) cornerstone
candidates. (d) three detected markers.

grids of the marker. Criteria 3 and 4 are used to eliminate the
cornerstone candidates whose sizes are not similar to the sizes
of northeast and southwest cornerstones that we have already
found.

After locating a correspondent set of a principal guide bar,
a secondary guide bar, a northeast cornerstone, a southwest
cornerstone, and a northwest cornerstone, we have a found
valid marker. Next, our task is to read the code on the marker.
Figure 6 shows the results of marker detection.

IV. CODE READING

The transformation from the marker coordinate to the

image coordinate is a perspective projection[2]. Given the
position (u,v) of a point p on the marker coordinate, the
position (x,y) of the projected point p’ on the image
coordinate, and the transformation A from the marker
coordinate to the image coordinate, we have the relationship
p' = p⋅A. Thus,

)/,/(),(
)/,/(),(

),,(),,(

qvquvu
wywxyx

ifc
heb
gda

qvuwyx

′′=

′′=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
′′=′′

We convert two-dimensional Cartesian coordinate (x,y) into

three-dimensional homogeneous coordinate for perspective
projection[3]. A perspective projection has eight degree of
freedom so we can solve the perspective projection by letting
i = 1 and solving the system[2]:

 4

 (a) (b)

 (c) (d)

Fig. 7. Code reading
(a) original image. (b) detected marker. (c) raw marker. (d) binarized marker

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−
−−
−−
−−
−−
−−
−−
−−

4

3

2

1

4

3

2

1

444444

333333

222222

111111

444444

333333

222222

111111

1000
1000
1000
1000
0001
0001
0001
0001

y
y
y
y
x
x
x
x

h
g
f
e
d
c
b
a

yvyuvu
yvyuvu
yvyuvu
yvyuvu
xvxuvu
xvxuvu
xvxuvu
xvxuvu

To solve A for the marker, we let (u1,v2) = (11,11),(u2,v2) =

(1,11), (u3,v3) = (11,1), and (u4,v4) = (1,1). The correspondent
(x1,y1), (x2,y2), (x3,y3), and (x4,y4) are the position of the
southeast corner and the centroids of the northeast, the
southwest, and the northwest cornerstones respectively.

After solving the perspective projection transformation A,
we calculate the projected positions of all the positions on the
marker coordinate and read the values of those pixels on
grayscale image. Thus, we have an 11×11 grayscale image
representing the marker and then binary the grayscale image
with MATLAB’s im2bw and graythresh functions. Finally, we
can extract the 81-bit information from the binarized image.
Fig. 7 shows the result of reading a marker code.

V. RESULTS COMBINING

We discussed that the adaptive thresholding had two

different directions and a parameter p to decide the resulting
binarized image. The images captured by the cell phones are
usually blurred. Depending on the blur and the background,
we need different p to perform adaptive thresholding well. As
in Fig. 4, when p is too small, the adaptive thresholding may
reject too much black pixels and result in that no marker is
detected. On the other hand, when p is too large, the adaptive
thresholding may accept too much black pixels and resulting

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 8. Combining the results of different parameters.

(a)(b) two original images. (c)(d) markers detected with adaptive
thresholding in alternate directions and p = 0.8. (e)(f) markers
detected with adaptive thresholding in alternate direction and p =
0.9. (g)(h) markers detected with adaptive thresholding in
left-to-right direction and p = 0.9.

in that the bars are connected to their neighbor elements.

Therefore, we need to find a good p for each marker. Our
solution is to run the detection in alternate directions with
different p’s and then combine all the results.

Moreover, when the marker is small, the alternate-direction
adaptive thresholding does not work well since the parameter
s which is 1/8 of the image width is relatively too large. Thus,
to detect those markers, we run another detection with
left-to-right direction and s = 1/128 of the image width. Fig. 8
shows the results with different parameters.

VI. RESULTS

After experimenting on different combinations of

 5

TABLE I
FOUR SET OF PARAMETERS USED IN OUR METHOD

p S Direction
0.6 1/8 of image width Alternate directions

0.75 1/8 of image width Alternate directions
0.9 1/8 of image width Alternate directions
1.1 1/8 of image width Alternate directions
0.9 1/128 of image width Left-to-right direction

TABLE II
RESULTS OF TRAINING IMAGES

Image Score Execution
Time*

Correct
Bits

#False
Alarms #Repeats

1 83 4.89 83 0 0
2 166 4.20 166 0 0
3 249 4.14 249 0 0
4 83 4.50 83 0 0
5 249 4.69 249 0 0
6 83 3.97 83 0 0
7 166 4.58 166 0 0
8 83 4.14 83 0 0
9 249 4.89 249 0 0

10 249 5.14 249 0 0
11 83 4.23 83 0 0
12 166 5.12 166 0 0

*run with MATLAB 7.0 on a PC with Pentium4 2.6GHz and
768MB RAM

parameters on test images, we found five sets of parameters
that should work well with the training images and test
images we generated. Our method uses these five different
sets of parameters and gets five detection results. Then, we
eliminate repeated detections from the five detection results
and get a final detection. The five different sets of parameters
we use are listed in Table I. As we discussed in Section II, a
large p accept more dark pixels and a small p reject more dark
pixels. We choose a large p for the markers where the contrast
is low and choose a small p for the markers where the contrast
is high. Parameter s works well in most cases when s is 1/8 of
the image width. However, it may work poorly when the
marker is too small so the background can affect the
thresholding. To detect those markers, we need a smaller s and
process in left-to-right direction.

Table II shows the results of running our method on the
training images. Our method performs well in detection the
ma rkers. Fig. 10 shows the result of detected markers on the
training image.

Our method has good performance on most of the images
we use to test. However, if only some part of marker is
covered by sharp shadow, it may lead to bad thresholding and
thus the marker may not be detected. An example is showed
in Fig. 9.

Fig. 9 Bad thresholding.
The right marker is partly covered by sharp shadow. Thus,
part of the marker is likely to be binarized to black and
results in bad thresholding.

REFERENCES

[1] M. Rohs, “Real-World Interaction with Camera-
Phones,” 2nd International Symposium on Ubiquitous
Computing Systems (UCS 2004), pp. 39-48, Tokyo,
Japan, November 2004

[2] P. D. Wellner, “Adaptive Thresholding for the
DigitalDesk,” Technical Report EPC-93-100, Rank
Xerox Research Centre, Cambridge, UK, 1993

[3] P. S. Heckbert, “Fundamentals of Texture Mapping and
Image Warping,” Master’s Thesis, Department of
Electrical Engineering and Computer Science,
University of California, Berkeley, 1989

 6

 7

Fig. 10. Results of marker detection on training images.

 8

	Visual Code Marker Detection
	Locating Pairs of Guide Bars
	Computing Southeast Corners
	Locating Northeast Cornerstones
	Locating Southwest Cornerstones
	Locating Northwest CornerStones

