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I. INTRODUCTION 

 
In this paper, we present a method to detect special visual 

code markers. Fig.1 shows an example of the visual code 
markers. The visual code markers we are considering have 
two fixed guide bars and three fixed cornerstones. Our 
method uses these elements to locate the visual code markers 
and then read the codes on markers. 

 
 

 
Fig 1. An example of a visual code marker. 

 
 
Our method is based on the method proposed in [1]. It 

firstly looks for the principal guide bar candidates. For each 
candidate, it looks for its correspondent secondary guide bar. 
Next, for each pair of guide bars, it looks for its three 
correspondent cornerstones. After a pair of guide bars and 
three cornerstones are located, we calculate the transformation 
between the visual code marker coordinate and the image 
coordinate and find the mapped position on the image plane 
for each position on the marker plane. 

Since the images are captured by cell phones, preprocessing 
is necessary for performing the detection well. Our method 
employs an adaptive thresholding proposed in [2] to binaries 
the original image. We made some modifications to achieve 
better performance on this specific application.  

 
 
 

II. PREPROCESSING 
 

The original images are color images captured by cell 
phones but the input images for marker detection in our 
method are black-white images. Firstly, an original color 
image is converted to a grayscale image by averaging the 
green and the red components of the original image because 
green and red components dominate the brightness more than 
blue component. After having a grayscale image, we employ 
an adaptive thresholding [1] to get the binarized image.  

Given a grayscale image, we compute the moving average 
 of the grayscale values at each position (x,y) where n is 

the sequence number of a pixel that depends on the direction 
we go along. When we go from left to right and from top to 
bottom, we have 
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im(x,y) is the grayscale value of pixel (x,y), n is the 

sequence number of pixel (x,y) and s is the width of region to 
be considered having similar lighting conditions. The adaptive 
thresholding usually has better results when s is 1/8 of the 
image width.  

To binarize the grayscale image in alternate directions, we 
need to take the moving average of previous line into consider 
to reduce the “every-other-line effect” mentioned in [2].  

Therefore, when n is in alternate directions, 
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               (a)                            (b) 

  
(c) (d) 
 

Fig 2. Results of adaptive thresholding. 
(a) original color image. (b) grayscale image. (c) resulting 
image with adaptive thresholding in left-to-right direction. (d) 
resulting image with adaptive thresholding in alternate 
directions. Notice that the text below the marker can only be 
seen in (d). 

 
 
and when n is in left-to-right direction, 
 

)(),( ngyxh =  
Finally, we binarize the image as 
 

otherwiseyxbw
p/s h(x,y) im(x,y) yxbw

0),(
  if1),(

=
⋅<=

 

 
p is a parameter that determines the percentage of values 

larger than the moving average that is classified as 1. Notice 
that our goal is to convert the black marker elements into 
white objects. 

Fig. 2 shows the results of one-direction adaptive 
thresholding and alternate-direction adaptive thresholding. 

Although [1] mentioned alternate direction reduced the 
“every-other-line” effect, we can still see clear artifacts. 
Therefore, after alternate-direction adaptive thresholding, we 
apply a closing with a kernel [1;1] to the resulting image to 
get rid of the effect. 

 
III. VISUAL CODE MARKER LOCATING 

 
Locating Pairs of Guide Bars 
We label all the regions on the preprocessed image and use 
regionprops function to calculate the area, the orientation of 
the major axis, the length of major axis, the length of minor 
axis, and the centroid of each region. A region with the ratio 
of the length of major axis and the length of minor axis larger 
than a number and smaller than another is considered a bar 
candidate. In our method, a bar candidate has that ratio 
between 3 and 12, is at least 30-pixel large, and its size is 
larger than 0.6 times its major axis length times its minor  

  
               (a)                            (b) 

  
               (c)                            (d) 
 

Fig. 3. Bar candidates and cornerstone candidates. 
(a) grayscale image. (b) binarized image. (c) bar candidates. 
(d) cornerstone candidates. 

 
 
 
 

axis length. Fig.3 shows the results of bar candidate detection. 
For each bar candidate, we estimate the position of the 

secondary bar. Illustrated in Fig. 4, for a bar candidate i, there 
are two positions where the secondary bar may be. 
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The est_width is the estimation of the width of a single grid 

of the marker on image plane. The width is estimated by the 
weighted average of the length of the major axis and the 
length of the minor axis. 
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The angel between the principal bar and the secondary bar 

is allowed to be within some range because of perspective 
projection. Also, the length of the secondary bar is ideally 5/7 
of the length of the principal bar. Thus, we then verify if there 
is another bar candidate near the estimated location and it 
must satisfy the following criteria: 

 
1. The angel between the principal bar and the secondary bar 

is between π/3 and 2π/3. 
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Fig 4. Two possible positions of a principal guide bar. 
The black bar is the principal guide bar we found and two grays bars indicate 
two possible positions of the secondary guide bar. 
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After locating a pair of a principal bar and a secondary bar, 

we calculate the actual orientations of the principal bar and 
the secondary bar, PrincipalOrientation and 
SecondaryOrientation which range between 0 and 2π as in 
Fig. 5. PrincipalOrientation is the angel that the principal bar 
is rotated around the bar’s down-most pixel on marker. 
SecondaryOrientation is the angle that the secondary bar is 
rotated around the bar’s  right-most pixel on marker. We also 
add the pair of bars into a set of validated pairs of bars. 

 
Computing Southeast Corners 

The southeast corner is the projected position of (11,11) in 
the marker coordinate on the image plane. It is the intersection 
of the principal bar i and the secondary bar j and the position 
(x,y) is computed as 
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Fig 5. PrincipalOrientation and SecondaryOrientation. 
Notice that PrincipalOrientation and SecondaryOrientation 
may not be same due to perspective projection. 

 
 

 
 
It has different ways to compute x to avoid computation 

error when tanβ is close to infinity. 
 
Locating Northeast Cornerstones 

We choose a region to be a cornerstone candidate if its ratio 
of major axis and minor axis lengths is smaller than a value. 
Because of low resolution and focus problem of cell phones, 
some small cornerstones have small minor axis length so the 
major axis length would be relatively large. Therefore, we use 
several levels of rules to compromise this problem. We say a 
region i is a cornerstone candidate if  
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Fig. 3 illustrates the results of cornerstone candidate 

detection. For each pair of a principal bar, i, and a secondary 
bar, j, we estimate the position of northeast cornerstone as 
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Since the estimation is based on the principal bar, the 

est_width used here should also be estimated based on the 
length of the principal bar. 

If there is a cornerstone near the estimated position, we 
verify that its size is about the size of one grid of the marker 
on image plane. The size of one grid of the marker on image 
plane is estimated by the weighted average of the principal 
bar area, area(i), and the secondary bar, area(j). 

 

2
5/)(7/)(__ jareaiareaareagridest +

=  

 
The cornerstone we found is valid for the pair of bars if its 

area is smaller than twice est_grid_area. If we cannot find a 
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valid cornerstone for a pair of bars, we discard the pair from 
the validated pairs of bars. 
 
Locating Southwest Cornerstones 

The position of the southwest cornerstone of a pair of a 
principal bar i and a secondary bar j is estimated as 
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Since the estimation is based on the secondary bar, the 

est_width used here is also estimated based on the length of 
the secondary bar. Also, a valid southwest cornerstone should 
be similar to the size of the estimated grid area and the size of 
the northeast cornerstone we found. Therefore, with the same 
est_grid_area in locating northeast cornerstones, a valid 
southwest cornerstone is smaller than twice est_grid_area and 
bigger than 0.2 × NE_cornerstone_ area. 
 
Locating Northwest CornerStones 

The position of the northwest corner is the most difficult 
one to estimate. To simplify the estimation, we assume that 
the angel between the image plane and the marker plane is not 
large so that the projected marker on the image plane is 
approximately a parallelogram. Therefore, we can estimate 
the position of the northwest cornerstone (est_x,est_y) with 
the position of the southeast corner, (x1,y1), the northeast 
cornerstone, (x2,y2), and the southwest cornerstone (x3,y3). 

 

132

132

_
_

yyyyest
xxxxest

−+=
−+=

 

 
The size of a valid northwest cornerstone should also be 

about 1 and about the same as the sizes of the northeast and 
the southwest cornerstones. Therefore, given a pair of a 
principal bar i and a secondary bar j, a valid northeast 
cornerstone cne, and a valid southwest cornerstone csw, a 
cornerstone candidate c is a valid northwest cornerstone for 
the marker if it is near the estimated position and it satisfies 
all of the following criteria: 

 
1. The area of c is smaller than 1.5 ⋅π⋅(dist(c,cne)/20)2 

2. The area of c is smaller than 1.5 ⋅π⋅(dist(c,csw)/20)2 

3. The area of c is smaller than 4 times the area of cne and 4 
times the area of csw 

4. The area of c is larger than 0.25 time the area of cne and 
0.25 times the area of csw 
where dist(c1,c2) is the distance between the centroids of 
c1 and c2. 
 

Criteria 1 and 2 are used to eliminate the cornerstone 
candidates that are too close to the northeast cornerstone or 
the southwest cornerstone. The distance between the 
northwest cornerstone should be large enough to fit in 10  

  
               (a)                            (b) 

  
               (c)                            (d) 

 
Fig. 6. Result of marker detection. 

(a) original image. (b) bar candidates. (c) cornerstone 
candidates. (d) three detected markers. 

 
 
 
grids of the marker. Criteria 3 and 4 are used to eliminate the 
cornerstone candidates whose sizes are not similar to the sizes 
of northeast and southwest cornerstones that we have already 
found. 

After locating a correspondent set of a principal guide bar, 
a secondary guide bar, a northeast cornerstone, a southwest 
cornerstone, and a northwest cornerstone, we have a found 
valid marker. Next, our task is to read the code on the marker. 
Figure 6 shows the results of marker detection. 

 
IV. CODE READING 

 
The transformation from the marker coordinate to the 

image coordinate is a perspective projection[2]. Given the 
position (u,v) of a point p on the marker coordinate, the 
position (x,y) of the projected point p’ on the image 
coordinate, and the transformation A from the marker 
coordinate to the image coordinate, we have the relationship 
p' = p⋅A. Thus, 
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We convert two-dimensional Cartesian coordinate (x,y) into 

three-dimensional homogeneous coordinate for perspective 
projection[3]. A perspective projection has eight degree of 
freedom so we can solve the perspective projection by letting 
i = 1 and solving the system[2]: 
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   (a)                             (b) 

        
  (c)                             (d) 

Fig. 7. Code reading 
(a) original image. (b) detected marker. (c) raw marker. (d) binarized marker  
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To solve A for the marker, we let (u1,v2) = (11,11),(u2,v2) = 

(1,11), (u3,v3) = (11,1), and (u4,v4) = (1,1). The correspondent 
(x1,y1), (x2,y2), (x3,y3), and (x4,y4) are the position of the 
southeast corner and the centroids of the northeast, the 
southwest, and the northwest cornerstones respectively. 

After solving the perspective projection transformation A, 
we calculate the projected positions of all the positions on the 
marker coordinate and read the values of those pixels on 
grayscale image. Thus, we have an 11×11 grayscale image 
representing the marker and then binary the grayscale image 
with MATLAB’s im2bw and graythresh functions. Finally, we 
can extract the 81-bit information from the binarized image. 
Fig. 7 shows the result of reading a marker code. 

 
V. RESULTS COMBINING 

 
We discussed that the adaptive thresholding had two 

different directions and a parameter p to decide the resulting 
binarized image. The images captured by the cell phones are 
usually blurred. Depending on the blur and the background, 
we need different p to perform adaptive thresholding well. As 
in Fig. 4, when p is too small, the adaptive thresholding may 
reject too much black pixels and result in that no marker is 
detected. On the other hand, when p is too large, the adaptive 
thresholding may accept too much black pixels and resulting  

  
(a)                             (b) 

  
(c)                             (d) 

  
(e)                             (f) 

  
(g) (h) 

 
Fig. 8. Combining the results of different parameters. 

(a)(b) two original images. (c)(d) markers detected with adaptive 
thresholding in alternate directions and p = 0.8. (e)(f) markers 
detected with adaptive thresholding in alternate direction and p = 
0.9. (g)(h) markers detected with adaptive thresholding in 
left-to-right direction and p = 0.9. 

 
 
 
in that the bars are connected to their neighbor elements. 

Therefore, we need to find a good p for each marker. Our 
solution is to run the detection in alternate directions with 
different p’s and then combine all the results.  

Moreover, when the marker is small, the alternate-direction 
adaptive thresholding does not work well since the parameter 
s which is 1/8 of the image width is relatively too large. Thus, 
to detect those markers, we run another detection with 
left-to-right direction and s = 1/128 of the image width. Fig. 8 
shows the results with different parameters. 

 
VI. RESULTS 

 
After experimenting on different combinations of  
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TABLE I 
FOUR SET OF PARAMETERS USED IN OUR METHOD 

p S Direction 
0.6 1/8 of image width Alternate directions 

0.75 1/8 of image width Alternate directions 
0.9 1/8 of image width Alternate directions 
1.1 1/8 of image width Alternate directions 
0.9 1/128 of image width Left-to-right direction

 
 
 

TABLE II 
RESULTS OF TRAINING IMAGES 

Image Score Execution 
Time* 

Correct  
Bits 

#False 
Alarms #Repeats

1 83 4.89 83 0 0 
2 166 4.20 166 0 0 
3 249 4.14 249 0 0 
4 83 4.50 83 0 0 
5 249 4.69 249 0 0 
6 83 3.97 83 0 0 
7 166 4.58 166 0 0 
8 83 4.14 83 0 0 
9 249 4.89 249 0 0 

10 249 5.14 249 0 0 
11 83 4.23 83 0 0 
12 166 5.12 166 0 0 

*run with MATLAB 7.0 on a PC with Pentium4 2.6GHz and 
768MB RAM 

 
 
 
parameters on test images, we found five sets of parameters 
that should work well with the training images and test 
images we generated. Our method uses these five different 
sets of parameters and gets five detection results. Then, we 
eliminate repeated detections from the five detection results 
and get a final detection. The five different sets of parameters 
we use are listed in Table I. As we discussed in Section II, a 
large p accept more dark pixels and a small p reject more dark 
pixels. We choose a large p for the markers where the contrast 
is low and choose a small p for the markers where the contrast 
is high. Parameter s works well in most cases when s is 1/8 of 
the image width. However, it may work poorly when the 
marker is too small so the background can affect the 
thresholding. To detect those markers, we need a smaller s and 
process in left-to-right direction. 

Table II shows the results of running our method on the 
training images. Our method performs well in detection the 
ma rkers. Fig. 10 shows the result of detected markers on the 
training image. 

Our method has good performance on most of the images 
we use to test. However, if only some part of marker is 
covered by sharp shadow, it may lead to bad thresholding and 
thus the marker may not be detected. An example is showed 
in Fig. 9. 

 
 
 
 
 
 

  
 

Fig. 9 Bad thresholding. 
The right marker is partly covered by sharp shadow. Thus, 
part of the marker is likely to be binarized to black and 
results in bad thresholding. 
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Fig. 10. Results of marker detection on training images. 
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