
 1

Abstract—An algorithm for detecting visual markers from

images taken using camera phones was designed and
implemented. The algorithm begins with pre-processing filtering,
proceeds with marker feature detection and refinement, and
concludes with data extraction. In addition, the algorithm utilizes
many linear approximations and techniques to reduce complexity
in favor of speed. Results verify the effectiveness of the
algorithm.

Index Terms—Linear Approximation, Marker Detection,
Template Matching, Visual Markers.

I. INTRODUCTION
ITH an increase in functionality and processing power
in mobile devices, many personal electronic devices are

beginning to offer camera functionality and image processing
capabilities. In particular, nearly every mobile phone
available on the market today is equipped with a VGA
camera. This new trend and added functionality allows for
new and innovative applications of mobile devices. This paper
explores a visual marker detection algorithm for use in
marker-based interaction applications of camera phones, as in
[1]-[3].
 Such applications in camera phones require fast detection
and decoding, or even real-time processing, while offering
very little processing power to perform the task. Thus, the
visual marker detection algorithm proposed here aims to
reduce complexity by making suitable approximations and
assumptions given the nature of the marker format described
in [1] (a sample marker image is shown in Fig. 1). By trading
off the ability to handle markers in extreme, and thus rare,
scenarios, the algorithm aims to deliver reasonable results
with much decreased latency. Most notably, the algorithm
assumes that the user will focus the marker at a moderate
distance without extreme tilt. This assumption translates into
the square and parallelogram assumption discussed in
Section C.
 The developed algorithm was implemented in MatLab and
run against several training images. The results demonstrate a
high degree of accuracy for the general case of images without

Manuscript received June 2, 2006. This work was supported in part by the

Stanford Center for Image Systems Engineering (SCIEN).
A. Lin was with the Massachusetts Institute of Technology, Cambridge,

MA 02139 USA. He is now with the Department of Electrical Engineering,
Stanford University, Stanford, CA 94305 USA (e-mail: mrlin@stanford.edu).

much distortion, and diminished accuracy for images with a
great deal of tilt or other distortion. As expected, the algorithm
latency increased significantly when support for the extreme
cases were added.

II. DETECTION ALGORITHM DESIGN

A. Overview
The detection algorithm consists of three phases. The Pre-

processing Phase accepts the input image and converts it into
a reduced format for manipulation. It enhances the image to
retain relevant information, and otherwise discards
unnecessary information. All subsequent phases process this
image, and the original is never revisited. The Detection
Phases proceed to detect distinguishing features of the makers
– the corner squares and guide bars. These phases use multiple
levels of filtering to iteratively reduce the work load for the
final template matching step in Detection Phase II. Lastly,
once the markers have been detected, interpretation of the data
bits is relatively straightforward in the Data Extraction Phase.
During Iteration, the entire algorithm is repeated, using a
different set of input parameters based on the results of the
previous run. The purpose of the Iterations is to extend the
algorithm’s scope of detectable distorted markers.

B. Pre-processing Phase
The Pre-processing Phase modifies the image such that the

Detection Phases can efficiently find the markers. As a first
step, the image is converted into an intensity image and sent
through a low-pass filter to remove noise. Then the image’s
contrast is enhanced using a simple, yet intelligent, technique
which correctly decides if a region is light or dark depending
on its neighbors. Lastly, the image is sharpened to output a
black and white image suitable for the latter phases. Fig. 1
shows an input image prior to pre-processing.

1) Noise Reduction:
Noise reduction is an important issue since the resolution in

most camera phones is quite poor. In addition, the limited
storage and processing capabilities of mobile phones often
implies lossy compression formats. Thus, noise reduction is
critical in correctly determining dark and light pixels.

In accordance with the main goal of reducing latency, a
simple, yet effective, low pass filter is used to reduce noise. A
filtering kernel1 of 3×3 1’s was used to reduce noise and

1 All filtering kernels were normalized in implementation such that the sum
of all elements is 1.

Visual Marker Detection Algorithm
for Mobile Phone Applications

Albert Lin, Member, IEEE

W

 2

fluctuations in color intensities.
Such filtering does blur the image, causing some edges to

smear across pixels. Since the average size of a bit square in
the marker is only a few pixels, such blurring could become a
problem. Most severely, small regions of white enclosed by
large regions of black are much darker than other white
regions due to the low camera quality. With blurring, these
small regions become even darker, while small regions of
black surrounded by large regions of white become lighter. In
such a case, small black regions can actually become lighter in
intensity than small white regions. This poses a problem when
deciding whether a region is “black” or “white”. Thus, an
intelligent contrast enhancement is required to compensate for
this effect.

2) Relative Contract Enhancement:
As described in the previous section, relative contrast

enhancement helps reverse the blurring effects of low pass
filtering which might otherwise cause bits to “flip” when
using an absolute intensity threshold. In addition, images
taken from a camera phone may have non-uniform lighting,
causing shadows in one area but not in others. In such a case,
it is possible for “white” in one area to be darker in intensity
than “black” in a different area of the image. Using an
absolute intensity threshold would classify such pixels
incorrectly. Relative contrast enhancement addresses both
these issues by considering the pixels neighbors, both far and
near, to better decide whether the pixel is darker than its
neighbors or lighter.

The relative contrast enhancement technique implemented
in this algorithm uses very simple filter kernels for increased
speed. First, a pixel’s 3×3 neighborhood is considered and the
average intensity is found. Then, the average intensity of the
four immediate neighbors of this neighborhood is found (3×3
neighborhood to the left of this 3×3 neighborhood, and 3×3
neighborhood to the top of this neighborhood … and so forth).
The intensity of the pixel in question is then enhanced
proportionally to the ratio of the two. Thus, this technique
enhances contrast relative to its surroundings. Gray
surrounded by white will be pushed darker, while gray
surrounded by black will be enhanced lighter.

Specifically, this can be implemented using a 3×3 kernel of
1’s to find the average intensity for a pixel’s neighborhood. A
second filter is run on this average intensity image to find the
average intensity of the four neighboring neighborhoods. The
pre-normalization kernel1 is

This kernel sums each of the four neighboring neighborhood

averages already computed from the previous filter2.
Finally, having computed the average intensity of the pixel

neighborhood and its adjacent regions, the ratio is found and
the pixel’s intensity is multiplied by this ratio. Thus, if the
pixel’s average intensity is darker than its surroundings, its
enhanced intensity will be forced lower, and vice versa. But if
the pixel’s average intensity is the same as its surroundings, its
enhanced intensity will remain relatively unchanged.

This relative contrast enhancement technique very
effectively prevents pixels from being misinterpreted. The
output of this step is shown in Fig. 1.

3) Extreme Sharpening:
The last step in the pre-processing phase consists of

converting the intensity image into a black and white image.
This step discards unused information embedded in the image
that would otherwise increase processing time. For example,
color information is not used in this algorithm, and the rate of
transition from dark regions to white regions is also not of
interest. Thus, a black and white image with sharp transitions
will suffice.

By sharpening the image, edges blurred by the camera and
by the low pass filtering step become more pronounced. By
using extreme sharpening, each pixel is forced to take on
either an extremely high intensity value or extremely low
intensity value, thereby converting the image to black and
white after an appropriate threshold.

The sharpening kernel1 used is
Note that the implicit normalization of this kernel when
filtering actually multiplies all the values by a factor of

approximately 3 due to the small center weight. Thus, the
small choice of the center weight significantly increases the
ratio of the intensity of a bright pixel surrounded by darker

2 A faster implementation of this averaging could be to pick out just the

four points of interest and average them, instead of computing the sum of
multiplications that includes 45 zeros. The specific speed difference will be
system dependent. Our tests indicated no significant speed increase when
using this technique over straightforward kernel filtering.

 -1 -1 -1
ksharpening = -1 8.3 -1
 -1 -1 -1 .

 0 0 0 1 0 0 0
 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
kavg neighborhoods = 1 0 0 0 0 0 1
 0 0 0 0 0 0 0
 0 0 0 0 0 0 0

0 0 0 1 0 0 0 .

Fig. 1. (Left) Sample Marker Image. (Middle) After noise reduction and
relative contrast enhancement. Light regions surrounded by dark regions
have become brighter. The result is most apparent when comparing two
markers within a non-uniformly lit image. (Right) After extreme sharpening
and conversion to black and white. Images are shown at 50%.

 3

pixels to the intensity of a dark pixel surrounded by brighter
pixels, hence extreme sharpening.
 Lastly, the image is threshold to yield a black and white
image. All following phases operate only on this black and
white image and its derivatives. The output image is shown in
Fig 1.

C. Detection Phase I – Corner Squares Detection
The detection of the marker is split into two phases. First,

the three corner squares of the marker are found. Then in the
second phase, the bottom right guide bars are detected. Corner
squares detection utilizes the first of many simplifying
approximations characteristic of this algorithm. Fig. 2 shows
the outputs of this phase.

1) Distortion Independent Template Matching:
Potential corner squares of the marker are found via

template matching3. Unfortunately, “squares” are not rotation
independent, nor are they tilt independent. Thus, it seems
inevitable that some information regarding the rotation and tilt
of the marker must first be found before detection can
continue. However, each “square” can be approximated to
first order by a circle (which can be inscribed within the
square) given the quality of the camera phone images. Unlike
squares, circles are rotation independent. Furthermore, the tilt
distorted square is still well approximated by a circle, which in
a sense ignores the far edges and corners of the square that are
most susceptible to the tilt distortion effects and focuses on
the center “body” of the square. Thus, by using a circular
template to approximate the desired squares, the problem is
much simplified and direct processing can begin.

The template kernel used here consists of a circle roughly 3
pixels in radius. The values within the circle are negative to
detect for black by penalizing for white. Outside the circle is a
2-pixel wide ring of 0’s. The 0’s are effectively a “don’t care”
and do not contribute to the score regardless of the pixel
value. Beyond this ring is another ring 3-pixels wide of
positive values. This outer most ring checks and rewards for
an enclosing white border, which is characteristic of the
corner squares of the marker.

This template correctly identifies all regions that consist of
roughly a black 6-pixel center with surrounding white. Since
this returns not only the corner squares of interest, but also
other similar textures in the image, further elimination is
performed. To reduce the amount of work for the following
elimination and filtering steps, a dynamic threshold is
implemented here to control the number of matches returned.
The resulting number of potential corner squares returned falls
between 15 to 25 points with great probability.

2) Likelihood Filtering:
Likelihood filtering is fundamentally the process of

iterating through each potential and eliminating ones that are
not likely corner squares. The previous step looks and
identifies suitable matches on an individual basis. Thus, this

3 Template matching kernels are not normalized in implementation. Often,

the absolute value of peaks can provide information on the nature of the image
region, thus allowing more accurate interpretations of the peaks.

step performs additional filters by looking at pairs of matches,
and ultimately at triplets. Thresholds and checks are designed
such that the probability of a false negative is significantly
low.

The filtering step consists of many substeps. First, for any
two points, consider them as the diagonal corner squares in
the marker (the top right and bottom left corner squares).
Check to the distance between them. Then compute an
estimate location for the third corner square (the top left
square). Check for the existence of a black square in the
vicinity of the estimated location by referring to the output of
the previous template matching step. Lastly, if a black square
is indeed found in the expected location, estimate the location
of the bottom right corner of the marker. Check to make sure
this corner point lies on (or near) a black region by referring
to the black and white image. Then, using these 4 corner
points, check for a white border around the potential marker
area. Consider these three corner squares as a potential triplet
if it passes all the above checks (and keep the 4th corner point
as an estimate for the next phase).

The most important part of this filtering step is to quickly
and effectively filter down the number of potentials before the
next phase. Since it iterates through pairs of points and a
subset of triplets, many approximations are made to simplify
and speed up the calculations for each pair/triplet. The most
important approximation is the square and parallelogram
approximation. The fundamental problem is: Given two points
that are diagonals of a quadrangle, how can the remaining two
points be found? The marker can be of any quadrangle shape
given an unknown distortion, tilt, and size, and thus, the
problem is actually unsolvable with the information given. By
making the square approximation, this problem can be solved
with almost no effort, avoiding a long series of processing that
would otherwise be necessary to extract tilt information.
Assuming the quadrangle is now a square, the third corner
square of the marker must be either a 90o or 270o rotation of
any corner point about the diagonal midpoint (since it is
unknown which point of the pair is the top right point and
which is the bottom left point). And rotation of a point
(relative to the diagonal midpoint) by 90o or 270o is simply
multiplying it by a 2×2 matrix consisting of only 0’s, 1, and -
1, which is essentially reordering and inverting one of the
coordinates. Thus, the estimated third corner square location is
very quickly found.

Once given the estimated location, a search region is defined
and the search begins to find a black square near the estimated
location. A distance matrix of weights inversely proportional
to distance is pre-computed and stored in a separate file. This
allows the algorithm to quickly find the nearest black square
(as returned by the previous template matching step). With
this new information of the actual location of the third corner
square, the bottom right corner of the marker can be
estimated. Since more information is now available, we
assume a slightly more relaxed shape – the parallelogram. To
find the bottom right corner point, simply rotate the third
corner square around the diagonal midpoint, which is again

 4

just a reordering and inversion of the coordinates.
Results demonstrated that this approximation can find the

corner squares of the marker exactly and estimate the bottom
right corner to within 5 pixels. The error for the estimate and
the probability of a miss increase with tilt. But for a wide
range of tilt (~50o from the perpendicular), this approximation
holds and the algorithm can quickly find the corner quadruplet
and proceed with filtering and eliminating potentials. For
higher degrees of tilt, the algorithm results in some false
negatives (misses).

D. Detection Phase II – Guide Bars Detection
At this point, the algorithm has already detected likely

markers and can begin to read off the data. However, there are
some false positives since the cumulative criteria thus far is
only that the four black regions must form a rough
parallelogram. In addition, since the bottom right corner is
only estimated, there may be some bit errors near the bottom
right corner with error probability proportional to tilt. Thus,
this phase detects for the guide bars in the marker as a further
measure to filter out false positives and also to improve the
location accuracy of bottom right corner estimation. Fig. 2
shows the output of this phase.

1) Guide Bars Estimation:
Similar to the problem encountered before, detecting guide

bars requires tilt and actual size information of the marker.
Computing this can be intensive and minimally beneficial to
accuracy. Thus, approximations are again made to linearize
and simplify the problem. The guide bars consist of a
“horizontal bar” and a “vertical bar”, which due to tilt are no
longer orthogonal to each other. But, by separating them, each
can be manipulated individually and then combined to well
approximate distortion due to tilt.

The location of the guide bars has been estimated
previously. Now, the size and the angle of the guide bars are
estimated. The approximation herein is fundamentally
approximating a tilt distorted guide bar (a single guide bar) as
a rotated version of a non-tilt distorted guide bar. This
approximation is good (in the mean square error sense) for
bars with long aspect ratios since the errors only occur at the
short edges. Since the given guide bars do have a long aspect
ratio, this approximation holds very well.

2) Dynamic Template Creation:
First, a truly horizontal bar template is created based on the

size information available from the previously determined
four corner points. The horizontal guide bar template is set to
5/11th (a little less to leave some margin) the width of the
marker. Then, by calculating the slope between the correct
two corner points, the required angle of rotation can be found
without the use of the complicated Radon or Hough transform.
Similarly, the vertical guide bar is dynamically constructed to
be 7/11th the height of the marker, and then rotate
appropriately. The two guide bar templates are merged
together to form the final guide-bars template. By separating
the guide bars for manipulation, the final merged template can
attain incident angles that cannot be easily obtained starting
from a template with both bars. As before, the guide-bars

template here also has negative weights for anticipated black
regions, a ring of positive weights for detection of white space
around the black regions, and regions of “don’t care’s”
between the two to account for sizing and alignment
discrepancies. Then template matching and thresholding is
used to identify true markers.

 3) Location Refinement:
With one pass through this 2nd Detection Phase, almost all

false positives are removed. In the rare cases where the marker
appears to have a marker within itself (the data bits within
form a shape similar to mini guide bars), this algorithm returns
both; otherwise this technique eliminates all other false
positives.

In addition, this technique also provides a new, more
accurate estimate of the bottom right corner of the marker
(based on the guide-bars template matching results). With this
result, the algorithm can proceed to read off the data bits.

Fig. 2. (Top) Image illustrating corner squares detection via template
matching. The three corner squares of the marker are correctly detected. In
this case, another data bit square also with surrounding white is detected.
(Bottom) Marker detection after both detection phases. The four corners here
very accurately determine the marker. The Red and Magenta points signify
the diagonal pair. The Yellow point signifies the top left corner which was
detected using the square approximation. And the Blue point is the found
location of the bottom right corner through template matching. Images are
shown at 100%, and superimposed over black/white and color images for
visualization only. Indicator arrows were added to facilitate detection of the
single pixel outputs.

 5

 However, in cases of high tilt (~ > 50o) the location of the
bottom right corner of the marker may not be accurate enough
to read all the bits with 100% accuracy (estimated overall bit
accuracy is 95% at high tilt). Thus, this entire phase can be
repeated, using the new coordinate information to better
estimate guide bar sizes and angles, which will create a better
template and find a more accurate result. This is of course
very costly, but at this point, there are very few markers left
and the iteration runs quickly through all the remaining valid
marker entries. The algorithm runs this second Detection
Phase for a total of three times, with the majority of the time
spent on the first iteration. Results indicate that this iterative
location refinement technique can increase corner location
accuracy from ±5 pixels to within ±1 pixel. For small markers,
this improvement in accuracy may be a big proportion of the
marker length.

Having determined the four corner points that define the
marker, data extraction can begin.

E. Data Extraction Phase
The data extraction phase actually includes a filter to remove

redundant marker counts, though rare. The reason why this
redundancy check is included here is because it is optional.
Given the scoring mechanism for measuring our performance,
it was deemed slightly beneficial (in terms of expected score)
to include this redundancy checker. However, since the
expected values with or without the checker are so close, it is
really a question of risk aversion.

Here, the term redundant means two markers that are found
to overlap, but are not identical repeats. Thus, they have a
different origin and consequently different data output. Thus,
using the checker to remove redundancies increases the
variance in the score. The risk is higher, but the reward is also
higher. Without the checker, one of the markers is likely
correct, while the other is likely wrong, yielding a low
variance, a low risk, and a low net reward. Since the number
of markers at this point is somewhere between 1-4 (due to
redundancies), the cost of running this checker is
insignificant. Thus, it is a matter of personal preference.

Since this checker is included in the final version of the
algorithm, it is briefly described here. The checker finds the
midpoints of each potential marker. Since no two markers can
overlap, it is necessarily the case that no two midpoints can be
closer than the length of the marker. Thus, if such a case is
detected between a pair of markers, the marker with the
largest area is retained. As described before, certain markers
seem to have a marker within a marker. Though rare, given a
redundancy is detected, this is the most likely cause of the
redundancy. Thus, keeping the largest marker correctly
eliminates the marker subset false positive. The area of a
quadrangle is approximated by the product of its diagonals.

1) Inverse Coordinate Transform:
A common method of processing markers involves

transforming the marker from the image coordinates to the
marker coordinates (reverse tilt-distortion, thus resulting in a
frontal view of the marker). However, as seen in the previous
sections, this algorithm has cleverly circumvented such
intensive calculations thus far. Rather, the algorithm here will

transform a subset of coordinates from the marker coordinate
system to an approximated image coordinate system.

In addition, each marker is on average 100 pixels wide and
100 pixels tall in the camera phone image, thus containing a
total of 10,000 pixels. Thus, transforming a marker into the
image coordinate system will require transforming 10,000
coordinates. On the other hand, finding the points of interest
in the marker coordinate system first, then transforming only
those 121 coordinates into the image coordinate system only
requires 121 computations. Furthermore, transforming from
marker coordinates to image coordinates can be simplified
greatly by making a series of disjoint linear approximations to
perform the transformation. Thus, the algorithm only
computes these 121 points.

The four corners of the marker in image coordinates
corresponds to the points (1,1), (1,11), (11,1), and (11,11) in
marker coordinates (all lie on the Z=0 plane). Thus, to
transform all the integer points that form the 11 × 11 grid in
marker coordinates into image coordinates, simply find points
linearly along the line connecting the top left corner to the top
right corner (in image coordinates). These points define the
start of each column. Similarly, find points linearly from the
bottom left to the bottom right. These define the end of each
column. Now, for each column, linearly calculate points along
the line connecting the top of the column to the bottom of the
column. Note that this technique does not necessarily produce
columns that are all parallel, which is desirable since this
freedom can largely account for distortion due to tilt. The set
of points found are then approximations to the transformation
of the marker coordinates to the image coordinates.

2) Bit Decision:
For each of the 121 points found above, now decide if the

bit is black or white. This is done by referring to the black and
white image after pre-processing. A majority vote in a 3×3
window determines the bit decision.

Lastly, a find sorting of the bits is done to remove bits that
are not data bits (such as the corner squares and the guide
bars). Alternatively, these bits can be omitted directly during
coordinate transformation, but the cost is small to include
them. Thus, they were included as a check and for easier
programming. Fig. 3 shows the outputs of Data Extraction.

Fig. 3. (Left) Image illustrating the linear approximation algorithm to find the
bit locations in the image coordinates. Bits are sampled at the intersections.
(Right) Results of bit decisions superimposed on the original input image.
White dots indicates a logical ‘1’ (corresponding to a black square) and black
dots indicates a logical ‘0’ (corresponding to a white square). Images are
shown at 75%.

 6

F. Iterations
Finally, the algorithm has run one pass through the image,

found the markers, and extracted the data. With one pass, the
algorithm has a high marker detection accuracy. However, if
even higher accuracies are desired, the algorithm can be run
again with a different set of input parameters to detect the
more extreme markers (highly distorted, unusually small or
large…etc).

The greatest weakness of this algorithm is that it assumes
the size of the marker will be around 100 pixels by 100 pixels.
Since this may not be the case depending on camera distance
to the marker, the algorithm is set to run a total of three times.
The first time it checks for normal markers, the second pass it
checks for small markers, and the last pass it checks for large
markers. As expected, checking for small markers takes the
most amount of time since it requires a finer search; and
detecting large markers takes the least amount of time. In
addition, the algorithm has checks to dynamically adjust the
parameters into the second and third run depending on the
results of the previous runs. It also terminates early if all
three4 markers are found.

III. RESULTS
The algorithm was designed using 6 training images and

then tested again another 6 training images, for a total of 12
test images. The results are briefly summarized below.

Some output images are shown in Fig. 1-3 for visualization
purposes. Note that many of these images are generated for
the sole purpose of visualization and that the algorithm does
not necessarily include all of the computations hinted in these
visualizations. The above results are run with all
visualizations off.

 Overall, the algorithm is a great success. It detects all of
the markers and bits with 100% accuracy, and runs each
image in less than 20 seconds. Since the goal is fast speed

4 It is assumed that the maximum number of markers in an image is 3, and
the minimum is 1.

processing, the next section examines some speed-accuracy
tradeoff options available to this algorithm should the user
desire to alternate the operating point.

IV. ANALYSIS
By adjusting parameters as well as iterations of the

Location Refinement and of the entire algorithm, the accuracy
of the algorithm can be traded off for speed. Fig. 4 illustrates
some design trade off points. As expected, this algorithm runs
fairly fast when moderate accuracy is required. To handle
extreme cases, some of the approximations may start yielding
noticeable errors, and thus the algorithm must work
significantly harder to compensate for this. Thus, the
algorithm takes much longer to run to reach 100% accuracy.
This is expected of an algorithm designed for high speed with
approximations tailored to handle the general, everyday cases.

This analysis also helps identify the critical steps in the
algorithm which deliver most of the algorithm’s accuracy, or
the steps in the algorithm which consume the most time. Table
2 lists the average runtimes for each step using a stopwatch
program running parallel to the algorithm. The stopwatch
program is not expected to significantly affect the program
runtime. The runtime breakdowns shown in Table 2 are
consistent with the speed trade-off points in Fig. 4.

TABLE I
RESULTS OF TEST RUN ON 12 IMAGES

Final Score 1909/1909

Marker Detection Rate 100%

Bit Reading Accuracy 100%

Marker False Positives Rate 0%

Marker Repeat Rate 0%

Run Time Total ~180s

Run Time per Image > 10 s and < 20s
Avg: ~15 seconds

Average Run Time per Marker ~ 10 seconds

Tests were run on a Dell Optiplex Pentium 4 3.2 GHz machine. Run times
are system dependent.

Fig. 4. Speed versus Accuracy (Runtime vs. Error Rate) Tradeoff curve. The
graph illustrates a few operating points obtained by adjust parameters and
iterations in the algorithm. 12 test images were used in the run. Runtime
represents the total time over the 12 images. The algorithm can be adjusted to
run at 100% accuracy with as little as 120 seconds (10 seconds per image).
And if the extreme cases of tilt were not present, then the algorithm could run
at 30-60 seconds (3-5 seconds/image) (80% accuracy here corresponds to
100% accuracy for general, non-extreme markers). The steps
(discontinuities) in the curve hints that the algorithm only errs by missing
markers, never by deciding bits incorrectly. Results confirm that for the
markers detected, the bit accuracy is 100% for all cases. Thus the error
percentage is crudely quantized into steps corresponding to 83 bits = 1
marker.

Full Algorithm
(3 Iterations)

Running 2 Full
Iterations only

Running 1 Full
Iteration only

No Location
Refinement

1 Iteration,
no repeat check

1 Iteration with
repeat check only

 7

V. CONCLUSION
In conclusion, the algorithm proposed herein takes several

approximations utilizing characteristics and features of the
marker to simplify the processing complexity to deliver high
accuracy at fast speeds. At one end of the speed-accuracy
curve, the algorithm can detect with 100% all the markers and
bits at about 15 seconds/image. And at the other end of the
curve (at reasonable accuracy), the algorithm performs at
~80% at about 5 seconds/image.

ACKNOWLEDGMENT
The author thanks Prof. Bernd Girod, Aditya Mavlankar,

and Chuo-Ling Chang, as well as the Stanford Center for
Image Systems Engineering, for their help and guidance.

REFERENCES
[1] M. Rohs, “Real-World Interaction with Camera-Phones,” at the 2nd

International Symposium on Ubiquitous Computing Systems (UCS
2004), Tokyo, Japan, November 2004.

[2] M. Rohs, F. Mattern, Visual Code Recognition for Camera-Equipped
Mobile Phones. [Online] Available:
http://www.vs.inf.ethz.ch/res/proj/visualcodes/index.html .

[3] M. Rohs, “Marker-Based Interaction Techniques for Camera-Phones” in
2nd Workshop on Multi-User and Ubiquitous User Interfaces (MU3I) at
IUI 2005, San Diego, California, USA, January 2005.

TABLE II

AVERAGE RUNTIMES BREAKDOWN

Total (per image) ~15.4s

 Preprocessing Phase ~2.1s

 Noise Reduction ~0.1s

 Relative Contrast Enhancement ~1.7s

 Extreme Sharpening ~0.3s

 Detection Phase I ~2.9s

 Corner Squares Template Matching ~1.1s

 Likelihood Filtering ~1.8s

 Detection Phase II (first iteration) ~5.6s

 Guide Bars Estimation ~0.6s

 Dynamic Template Creation/Matching ~5.0s

 Detection Phase II, 2 more times
 (a.k.a Location Refinement)

~4.8s total
(~2.4s each)

 Data Extraction Phase Insignificant

 Inverse Coordinate Transformation Insignificant

 Bit Decisions Insignificant

Tests were run on a Dell Optiplex Pentium 4 3.2 GHz machine. Run times
are system dependent. The time reported are total times spent in each step for
three iterations of the whole algorithm. The test images contained three
markers over a complex background. Times shown are for a single image.

