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Abstract—An algorithm for detecting visual markers from 

images taken using camera phones was designed and 
implemented. The algorithm begins with pre-processing filtering, 
proceeds with marker feature detection and refinement, and 
concludes with data extraction. In addition, the algorithm utilizes 
many linear approximations and techniques to reduce complexity 
in favor of speed. Results verify the effectiveness of the 
algorithm. 
 

Index Terms—Linear Approximation, Marker Detection, 
Template Matching, Visual Markers. 
 

I. INTRODUCTION 
ITH an increase in functionality and processing power 
in mobile devices, many personal electronic devices are 

beginning to offer camera functionality and image processing 
capabilities.  In particular, nearly every mobile phone 
available on the market today is equipped with a VGA 
camera. This new trend and added functionality allows for 
new and innovative applications of mobile devices. This paper 
explores a visual marker detection algorithm for use in 
marker-based interaction applications of camera phones, as in 
[1]-[3].  
 Such applications in camera phones require fast detection 
and decoding, or even real-time processing, while offering 
very little processing power to perform the task. Thus, the 
visual marker detection algorithm proposed here aims to 
reduce complexity by making suitable approximations and 
assumptions given the nature of the marker format described 
in [1] (a sample marker image is shown in Fig. 1). By trading 
off the ability to handle markers in extreme, and thus rare, 
scenarios, the algorithm aims to deliver reasonable results 
with much decreased latency. Most notably, the algorithm 
assumes that the user will focus the marker at a moderate 
distance without extreme tilt. This assumption translates into 
the square and parallelogram assumption discussed in 
Section C. 
 The developed algorithm was implemented in MatLab and 
run against several training images. The results demonstrate a 
high degree of accuracy for the general case of images without 
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much distortion, and diminished accuracy for images with a 
great deal of tilt or other distortion. As expected, the algorithm 
latency increased significantly when support for the extreme 
cases were added. 

II. DETECTION ALGORITHM DESIGN 

A. Overview 
The detection algorithm consists of three phases. The Pre-

processing Phase accepts the input image and converts it into 
a reduced format for manipulation. It enhances the image to 
retain relevant information, and otherwise discards 
unnecessary information. All subsequent phases process this 
image, and the original is never revisited. The Detection 
Phases proceed to detect distinguishing features of the makers 
– the corner squares and guide bars. These phases use multiple 
levels of filtering to iteratively reduce the work load for the 
final template matching step in Detection Phase II. Lastly, 
once the markers have been detected, interpretation of the data 
bits is relatively straightforward in the Data Extraction Phase. 
During Iteration, the entire algorithm is repeated, using a 
different set of input parameters based on the results of the 
previous run. The purpose of the Iterations is to extend the 
algorithm’s scope of detectable distorted markers. 

 

B. Pre-processing Phase 
The Pre-processing Phase modifies the image such that the 

Detection Phases can efficiently find the markers. As a first 
step, the image is converted into an intensity image and sent 
through a low-pass filter to remove noise. Then the image’s 
contrast is enhanced using a simple, yet intelligent, technique 
which correctly decides if a region is light or dark depending 
on its neighbors. Lastly, the image is sharpened to output a 
black and white image suitable for the latter phases. Fig. 1 
shows an input image prior to pre-processing. 

1) Noise Reduction: 
Noise reduction is an important issue since the resolution in 

most camera phones is quite poor. In addition, the limited 
storage and processing capabilities of mobile phones often 
implies lossy compression formats. Thus, noise reduction is 
critical in correctly determining dark and light pixels. 

In accordance with the main goal of reducing latency, a 
simple, yet effective, low pass filter is used to reduce noise. A 
filtering kernel1 of 3×3 1’s was used to reduce noise and 
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fluctuations in color intensities.  
Such filtering does blur the image, causing some edges to 

smear across pixels. Since the average size of a bit square in 
the marker is only a few pixels, such blurring could become a 
problem. Most severely, small regions of white enclosed by 
large regions of black are much darker than other white 
regions due to the low camera quality. With blurring, these 
small regions become even darker, while small regions of 
black surrounded by large regions of white become lighter. In 
such a case, small black regions can actually become lighter in 
intensity than small white regions. This poses a problem when 
deciding whether a region is “black” or “white”. Thus, an 
intelligent contrast enhancement is required to compensate for 
this effect. 

2) Relative Contract Enhancement: 
As described in the previous section, relative contrast 

enhancement helps reverse the blurring effects of low pass 
filtering which might otherwise cause bits to “flip” when 
using an absolute intensity threshold. In addition, images 
taken from a camera phone may have non-uniform lighting, 
causing shadows in one area but not in others. In such a case, 
it is possible for “white” in one area to be darker in intensity 
than “black” in a different area of the image. Using an 
absolute intensity threshold would classify such pixels 
incorrectly. Relative contrast enhancement addresses both 
these issues by considering the pixels neighbors, both far and 
near, to better decide whether the pixel is darker than its 
neighbors or lighter. 

The relative contrast enhancement technique implemented 
in this algorithm uses very simple filter kernels for increased 
speed. First, a pixel’s 3×3 neighborhood is considered and the 
average intensity is found. Then, the average intensity of the 
four immediate neighbors of this neighborhood is found (3×3 
neighborhood to the left of this 3×3 neighborhood, and 3×3 
neighborhood to the top of this neighborhood … and so forth). 
The intensity of the pixel in question is then enhanced 
proportionally to the ratio of the two. Thus, this technique 
enhances contrast relative to its surroundings. Gray 
surrounded by white will be pushed darker, while gray 
surrounded by black will be enhanced lighter. 

Specifically, this can be implemented using a 3×3 kernel of 
1’s to find the average intensity for a pixel’s neighborhood. A 
second filter is run on this average intensity image to find the 
average intensity of the four neighboring neighborhoods. The 
pre-normalization kernel1 is  

 

This kernel sums each of the four neighboring neighborhood 

averages already computed from the previous filter2.  
Finally, having computed the average intensity of the pixel 

neighborhood and its adjacent regions, the ratio is found and 
the pixel’s intensity is multiplied by this ratio. Thus, if the 
pixel’s average intensity is darker than its surroundings, its 
enhanced intensity will be forced lower, and vice versa. But if 
the pixel’s average intensity is the same as its surroundings, its 
enhanced intensity will remain relatively unchanged. 

This relative contrast enhancement technique very 
effectively prevents pixels from being misinterpreted. The 
output of this step is shown in Fig. 1. 

 

 
3) Extreme Sharpening: 
The last step in the pre-processing phase consists of 

converting the intensity image into a black and white image. 
This step discards unused information embedded in the image 
that would otherwise increase processing time. For example, 
color information is not used in this algorithm, and the rate of 
transition from dark regions to white regions is also not of 
interest. Thus, a black and white image with sharp transitions 
will suffice. 

By sharpening the image, edges blurred by the camera and 
by the low pass filtering step become more pronounced. By 
using extreme sharpening, each pixel is forced to take on 
either an extremely high intensity value or extremely low 
intensity value, thereby converting the image to black and 
white after an appropriate threshold.  

The sharpening kernel1 used is 
Note that the implicit normalization of this kernel when 
filtering actually multiplies all the values by a factor of 

approximately 3 due to the small center weight. Thus, the 
small choice of the center weight significantly increases the 
ratio of the intensity of a bright pixel surrounded by darker 

 
2 A faster implementation of this averaging could be to pick out just the 

four points of interest and average them, instead of computing the sum of 
multiplications that includes 45 zeros. The specific speed difference will be 
system dependent. Our tests indicated no significant speed increase when 
using this technique over straightforward kernel filtering. 
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Fig. 1. (Left) Sample Marker Image. (Middle) After noise reduction and 
relative contrast enhancement. Light regions surrounded by dark regions 
have become brighter. The result is most apparent when comparing two 
markers within a non-uniformly lit image. (Right) After extreme sharpening 
and conversion to black and white. Images are shown at 50%.
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pixels to the intensity of a dark pixel surrounded by brighter 
pixels, hence extreme sharpening. 
 Lastly, the image is threshold to yield a black and white 
image. All following phases operate only on this black and 
white image and its derivatives. The output image is shown in 
Fig 1. 

C. Detection Phase I – Corner Squares Detection 
The detection of the marker is split into two phases. First, 

the three corner squares of the marker are found. Then in the 
second phase, the bottom right guide bars are detected. Corner 
squares detection utilizes the first of many simplifying 
approximations characteristic of this algorithm. Fig. 2 shows 
the outputs of this phase. 

1) Distortion Independent Template Matching:  
Potential corner squares of the marker are found via 

template matching3. Unfortunately, “squares” are not rotation 
independent, nor are they tilt independent. Thus, it seems 
inevitable that some information regarding the rotation and tilt 
of the marker must first be found before detection can 
continue. However, each “square” can be approximated to 
first order by a circle (which can be inscribed within the 
square) given the quality of the camera phone images. Unlike 
squares, circles are rotation independent. Furthermore, the tilt 
distorted square is still well approximated by a circle, which in 
a sense ignores the far edges and corners of the square that are 
most susceptible to the tilt distortion effects and focuses on 
the center “body” of the square. Thus, by using a circular 
template to approximate the desired squares, the problem is 
much simplified and direct processing can begin. 

The template kernel used here consists of a circle roughly 3 
pixels in radius. The values within the circle are negative to 
detect for black by penalizing for white. Outside the circle is a 
2-pixel wide ring of 0’s. The 0’s are effectively a “don’t care” 
and do not contribute to the score regardless of the pixel 
value. Beyond this ring is another ring 3-pixels wide of 
positive values. This outer most ring checks and rewards for 
an enclosing white border, which is characteristic of the 
corner squares of the marker.  

This template correctly identifies all regions that consist of 
roughly a black 6-pixel center with surrounding white. Since 
this returns not only the corner squares of interest, but also 
other similar textures in the image, further elimination is 
performed. To reduce the amount of work for the following 
elimination and filtering steps, a dynamic threshold is 
implemented here to control the number of matches returned. 
The resulting number of potential corner squares returned falls 
between 15 to 25 points with great probability. 

2) Likelihood Filtering:  
Likelihood filtering is fundamentally the process of 

iterating through each potential and eliminating ones that are 
not likely corner squares. The previous step looks and 
identifies suitable matches on an individual basis. Thus, this 

 
3 Template matching kernels are not normalized in implementation. Often, 

the absolute value of peaks can provide information on the nature of the image 
region, thus allowing more accurate interpretations of the peaks. 

step performs additional filters by looking at pairs of matches, 
and ultimately at triplets. Thresholds and checks are designed 
such that the probability of a false negative is significantly 
low. 

The filtering step consists of many substeps. First, for any 
two points, consider them as the diagonal corner squares in 
the marker (the top right and bottom left corner squares). 
Check to the distance between them. Then compute an 
estimate location for the third corner square (the top left 
square). Check for the existence of a black square in the 
vicinity of the estimated location by referring to the output of 
the previous template matching step. Lastly, if a black square 
is indeed found in the expected location, estimate the location 
of the bottom right corner of the marker. Check to make sure 
this corner point lies on (or near) a black region by referring 
to the black and white image. Then, using these 4 corner 
points, check for a white border around the potential marker 
area. Consider these three corner squares as a potential triplet 
if it passes all the above checks (and keep the 4th corner point 
as an estimate for the next phase). 

The most important part of this filtering step is to quickly 
and effectively filter down the number of potentials before the 
next phase. Since it iterates through pairs of points and a 
subset of triplets, many approximations are made to simplify 
and speed up the calculations for each pair/triplet. The most 
important approximation is the square and parallelogram 
approximation. The fundamental problem is: Given two points 
that are diagonals of a quadrangle, how can the remaining two 
points be found? The marker can be of any quadrangle shape 
given an unknown distortion, tilt, and size, and thus, the 
problem is actually unsolvable with the information given. By 
making the square approximation, this problem can be solved 
with almost no effort, avoiding a long series of processing that 
would otherwise be necessary to extract tilt information. 
Assuming the quadrangle is now a square, the third corner 
square of the marker must be either a 90o or 270o rotation of 
any corner point about the diagonal midpoint (since it is 
unknown which point of the pair is the top right point and 
which is the bottom left point). And rotation of a point 
(relative to the diagonal midpoint) by 90o or 270o is simply 
multiplying it by a 2×2 matrix consisting of only 0’s, 1, and -
1, which is essentially reordering and inverting one of the 
coordinates. Thus, the estimated third corner square location is 
very quickly found.  

Once given the estimated location, a search region is defined 
and the search begins to find a black square near the estimated 
location. A distance matrix of weights inversely proportional 
to distance is pre-computed and stored in a separate file. This 
allows the algorithm to quickly find the nearest black square 
(as returned by the previous template matching step). With 
this new information of the actual location of the third corner 
square, the bottom right corner of the marker can be 
estimated. Since more information is now available, we 
assume a slightly more relaxed shape – the parallelogram. To 
find the bottom right corner point, simply rotate the third 
corner square around the diagonal midpoint, which is again 
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just a reordering and inversion of the coordinates. 
Results demonstrated that this approximation can find the 

corner squares of the marker exactly and estimate the bottom 
right corner to within 5 pixels. The error for the estimate and 
the probability of a miss increase with tilt. But for a wide 
range of tilt (~50o from the perpendicular), this approximation 
holds and the algorithm can quickly find the corner quadruplet 
and proceed with filtering and eliminating potentials. For 
higher degrees of tilt, the algorithm results in some false 
negatives (misses). 

D. Detection Phase II – Guide Bars Detection 
At this point, the algorithm has already detected likely 

markers and can begin to read off the data. However, there are 
some false positives since the cumulative criteria thus far is 
only that the four black regions must form a rough 
parallelogram. In addition, since the bottom right corner is 
only estimated, there may be some bit errors near the bottom 
right corner with error probability proportional to tilt. Thus, 
this phase detects for the guide bars in the marker as a further 
measure to filter out false positives and also to improve the 
location accuracy of bottom right corner estimation. Fig. 2 
shows the output of this phase. 

1) Guide Bars Estimation: 
Similar to the problem encountered before, detecting guide 

bars requires tilt and actual size information of the marker. 
Computing this can be intensive and minimally beneficial to 
accuracy. Thus, approximations are again made to linearize 
and simplify the problem. The guide bars consist of a 
“horizontal bar” and a “vertical bar”, which due to tilt are no 
longer orthogonal to each other. But, by separating them, each 
can be manipulated individually and then combined to well 
approximate distortion due to tilt.  

The location of the guide bars has been estimated 
previously. Now, the size and the angle of the guide bars are 
estimated. The approximation herein is fundamentally 
approximating a tilt distorted guide bar (a single guide bar) as 
a rotated version of a non-tilt distorted guide bar. This 
approximation is good (in the mean square error sense) for 
bars with long aspect ratios since the errors only occur at the 
short edges. Since the given guide bars do have a long aspect 
ratio, this approximation holds very well. 

2) Dynamic Template Creation: 
First, a truly horizontal bar template is created based on the 

size information available from the previously determined 
four corner points. The horizontal guide bar template is set to 
5/11th (a little less to leave some margin) the width of the 
marker. Then, by calculating the slope between the correct 
two corner points, the required angle of rotation can be found 
without the use of the complicated Radon or Hough transform. 
Similarly, the vertical guide bar is dynamically constructed to 
be 7/11th the height of the marker, and then rotate 
appropriately. The two guide bar templates are merged 
together to form the final guide-bars template. By separating 
the guide bars for manipulation, the final merged template can 
attain incident angles that cannot be easily obtained starting 
from a template with both bars. As before, the guide-bars 

template here also has negative weights for anticipated black 
regions, a ring of positive weights for detection of white space 
around the black regions, and regions of “don’t care’s” 
between the two to account for sizing and alignment 
discrepancies. Then template matching and thresholding is 
used to identify true markers. 

 

 
 3) Location Refinement: 
With one pass through this 2nd Detection Phase, almost all 

false positives are removed. In the rare cases where the marker 
appears to have a marker within itself (the data bits within 
form a shape similar to mini guide bars), this algorithm returns 
both; otherwise this technique eliminates all other false 
positives.  

In addition, this technique also provides a new, more 
accurate estimate of the bottom right corner of the marker 
(based on the guide-bars template matching results). With this 
result, the algorithm can proceed to read off the data bits. 

 
 

 
 

Fig. 2. (Top) Image illustrating corner squares detection via template 
matching. The three corner squares of the marker are correctly detected. In 
this case, another data bit square also with surrounding white is detected. 
(Bottom) Marker detection after both detection phases. The four corners here 
very accurately determine the marker. The Red and Magenta points signify 
the diagonal pair. The Yellow point signifies the top left corner which was 
detected using the square approximation. And the Blue point is the found 
location of the bottom right corner through template matching. Images are 
shown at 100%, and superimposed over black/white and color images for 
visualization only. Indicator arrows were added to facilitate detection of the 
single pixel outputs. 
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 However, in cases of high tilt (~ > 50o) the location of the 
bottom right corner of the marker may not be accurate enough 
to read all the bits with 100% accuracy (estimated overall bit 
accuracy is 95% at high tilt). Thus, this entire phase can be 
repeated, using the new coordinate information to better 
estimate guide bar sizes and angles, which will create a better 
template and find a more accurate result. This is of course 
very costly, but at this point, there are very few markers left 
and the iteration runs quickly through all the remaining valid 
marker entries. The algorithm runs this second Detection 
Phase for a total of three times, with the majority of the time 
spent on the first iteration. Results indicate that this iterative 
location refinement technique can increase corner location 
accuracy from ±5 pixels to within ±1 pixel. For small markers, 
this improvement in accuracy may be a big proportion of the 
marker length. 

Having determined the four corner points that define the 
marker, data extraction can begin. 

E. Data Extraction Phase 
The data extraction phase actually includes a filter to remove 

redundant marker counts, though rare. The reason why this 
redundancy check is included here is because it is optional. 
Given the scoring mechanism for measuring our performance, 
it was deemed slightly beneficial (in terms of expected score) 
to include this redundancy checker. However, since the 
expected values with or without the checker are so close, it is 
really a question of risk aversion.  

Here, the term redundant means two markers that are found 
to overlap, but are not identical repeats. Thus, they have a 
different origin and consequently different data output. Thus, 
using the checker to remove redundancies increases the 
variance in the score. The risk is higher, but the reward is also 
higher. Without the checker, one of the markers is likely 
correct, while the other is likely wrong, yielding a low 
variance, a low risk, and a low net reward. Since the number 
of markers at this point is somewhere between 1-4 (due to 
redundancies), the cost of running this checker is 
insignificant. Thus, it is a matter of personal preference. 

Since this checker is included in the final version of the 
algorithm, it is briefly described here. The checker finds the 
midpoints of each potential marker. Since no two markers can 
overlap, it is necessarily the case that no two midpoints can be 
closer than the length of the marker. Thus, if such a case is 
detected between a pair of markers, the marker with the 
largest area is retained. As described before, certain markers 
seem to have a marker within a marker. Though rare, given a 
redundancy is detected, this is the most likely cause of the 
redundancy. Thus, keeping the largest marker correctly 
eliminates the marker subset false positive. The area of a 
quadrangle is approximated by the product of its diagonals. 

1) Inverse Coordinate Transform: 
A common method of processing markers involves 

transforming the marker from the image coordinates to the 
marker coordinates (reverse tilt-distortion, thus resulting in a 
frontal view of the marker). However, as seen in the previous 
sections, this algorithm has cleverly circumvented such 
intensive calculations thus far. Rather, the algorithm here will 

transform a subset of coordinates from the marker coordinate 
system to an approximated image coordinate system.  

In addition, each marker is on average 100 pixels wide and 
100 pixels tall in the camera phone image, thus containing a 
total of 10,000 pixels. Thus, transforming a marker into the 
image coordinate system will require transforming 10,000 
coordinates. On the other hand, finding the points of interest 
in the marker coordinate system first, then transforming only 
those 121 coordinates into the image coordinate system only 
requires 121 computations. Furthermore, transforming from 
marker coordinates to image coordinates can be simplified 
greatly by making a series of disjoint linear approximations to 
perform the transformation. Thus, the algorithm only 
computes these 121 points.  

The four corners of the marker in image coordinates 
corresponds to the points (1,1), (1,11), (11,1), and (11,11) in 
marker coordinates (all lie on the Z=0 plane). Thus, to 
transform all the integer points that form the 11 × 11 grid in 
marker coordinates into image coordinates, simply find points 
linearly along the line connecting the top left corner to the top 
right corner (in image coordinates). These points define the 
start of each column. Similarly, find points linearly from the 
bottom left to the bottom right. These define the end of each 
column. Now, for each column, linearly calculate points along 
the line connecting the top of the column to the bottom of the 
column. Note that this technique does not necessarily produce 
columns that are all parallel, which is desirable since this 
freedom can largely account for distortion due to tilt. The set 
of points found are then approximations to the transformation 
of the marker coordinates to the image coordinates. 

2) Bit Decision: 
For each of the 121 points found above, now decide if the 

bit is black or white. This is done by referring to the black and 
white image after pre-processing. A majority vote in a 3×3 
window determines the bit decision.  

Lastly, a find sorting of the bits is done to remove bits that 
are not data bits (such as the corner squares and the guide 
bars). Alternatively, these bits can be omitted directly during 
coordinate transformation, but the cost is small to include 
them. Thus, they were included as a check and for easier 
programming. Fig. 3 shows the outputs of Data Extraction. 

 

       
 
Fig. 3. (Left) Image illustrating the linear approximation algorithm to find the 
bit locations in the image coordinates. Bits are sampled at the intersections. 
(Right) Results of bit decisions superimposed on the original input image. 
White dots indicates a logical ‘1’ (corresponding to a black square) and black 
dots indicates a logical ‘0’ (corresponding to a white square). Images are 
shown at 75%. 
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F. Iterations  
Finally, the algorithm has run one pass through the image, 

found the markers, and extracted the data. With one pass, the 
algorithm has a high marker detection accuracy. However, if 
even higher accuracies are desired, the algorithm can be run 
again with a different set of input parameters to detect the 
more extreme markers (highly distorted, unusually small or 
large…etc). 

The greatest weakness of this algorithm is that it assumes 
the size of the marker will be around 100 pixels by 100 pixels. 
Since this may not be the case depending on camera distance 
to the marker, the algorithm is set to run a total of three times. 
The first time it checks for normal markers, the second pass it 
checks for small markers, and the last pass it checks for large 
markers. As expected, checking for small markers takes the 
most amount of time since it requires a finer search; and 
detecting large markers takes the least amount of time. In 
addition, the algorithm has checks to dynamically adjust the 
parameters into the second and third run depending on the 
results of the previous runs. It also terminates early if all 
three4 markers are found. 

III. RESULTS 
The algorithm was designed using 6 training images and 

then tested again another 6 training images, for a total of 12 
test images. The results are briefly summarized below. 

 

 
 
Some output images are shown in Fig. 1-3 for visualization 
purposes. Note that many of these images are generated for 
the sole purpose of visualization and that the algorithm does 
not necessarily include all of the computations hinted in these 
visualizations. The above results are run with all 
visualizations off. 

 Overall, the algorithm is a great success. It detects all of 
the markers and bits with 100% accuracy, and runs each 
image in less than 20 seconds. Since the goal is fast speed 
 

4 It is assumed that the maximum number of markers in an image is 3, and 
the minimum is 1. 

processing, the next section examines some speed-accuracy 
tradeoff options available to this algorithm should the user 
desire to alternate the operating point. 

IV. ANALYSIS 
By adjusting parameters as well as iterations of the 

Location Refinement and of the entire algorithm, the accuracy 
of the algorithm can be traded off for speed. Fig. 4 illustrates 
some design trade off points. As expected, this algorithm runs 
fairly fast when moderate accuracy is required. To handle 
extreme cases, some of the approximations may start yielding 
noticeable errors, and thus the algorithm must work 
significantly harder to compensate for this. Thus, the 
algorithm takes much longer to run to reach 100% accuracy. 
This is expected of an algorithm designed for high speed with 
approximations tailored to handle the general, everyday cases. 

This analysis also helps identify the critical steps in the 
algorithm which deliver most of the algorithm’s accuracy, or 
the steps in the algorithm which consume the most time. Table 
2 lists the average runtimes for each step using a stopwatch 
program running parallel to the algorithm. The stopwatch 
program is not expected to significantly affect the program 
runtime. The runtime breakdowns shown in Table 2 are 
consistent with the speed trade-off points in Fig. 4. 

 

 
 
 

TABLE I 
RESULTS OF TEST RUN ON 12 IMAGES 

Final Score 1909/1909 

Marker Detection Rate 100% 

Bit Reading Accuracy 100% 

Marker False Positives Rate 0% 

Marker Repeat Rate 0% 

Run Time Total ~180s 

Run Time per Image > 10 s and  < 20s 
Avg: ~15 seconds 

Average Run Time per Marker ~ 10 seconds 

Tests were run on a Dell Optiplex Pentium 4 3.2 GHz machine. Run times 
are system dependent.  

      

 
Fig. 4. Speed versus Accuracy (Runtime vs. Error Rate) Tradeoff curve. The 
graph illustrates a few operating points obtained by adjust parameters and 
iterations in the algorithm. 12 test images were used in the run. Runtime 
represents the total time over the 12 images. The algorithm can be adjusted to 
run at 100% accuracy with as little as 120 seconds (10 seconds per image). 
And if the extreme cases of tilt were not present, then the algorithm could run 
at 30-60 seconds (3-5 seconds/image) (80% accuracy here corresponds to 
100% accuracy for general, non-extreme markers). The steps 
(discontinuities) in the curve hints that the algorithm only errs by missing 
markers, never by deciding bits incorrectly. Results confirm that for the 
markers detected, the bit accuracy is 100% for all cases. Thus the error 
percentage is crudely quantized into steps corresponding to 83 bits = 1 
marker. 

Full Algorithm 
(3 Iterations) 

Running 2 Full 
Iterations only 

Running 1 Full 
Iteration only 

No Location 
Refinement 

1 Iteration,  
no repeat check 

1 Iteration with 
repeat check only 
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V. CONCLUSION 
In conclusion, the algorithm proposed herein takes several 

approximations utilizing characteristics and features of the 
marker to simplify the processing complexity to deliver high 
accuracy at fast speeds. At one end of the speed-accuracy 
curve, the algorithm can detect with 100% all the markers and 
bits at about 15 seconds/image. And at the other end of the 
curve (at reasonable accuracy), the algorithm performs at 
~80% at about 5 seconds/image. 
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TABLE II 

AVERAGE RUNTIMES BREAKDOWN 

Total (per image) ~15.4s 

 Preprocessing Phase ~2.1s 

  Noise Reduction ~0.1s 

  Relative Contrast Enhancement ~1.7s 

  Extreme Sharpening ~0.3s 

 Detection Phase I ~2.9s 

  Corner Squares Template Matching ~1.1s 

  Likelihood Filtering ~1.8s 

 Detection Phase II (first iteration) ~5.6s 

  Guide Bars Estimation ~0.6s 

  Dynamic Template Creation/Matching ~5.0s 

 Detection Phase II, 2 more times 
 (a.k.a Location Refinement) 

~4.8s total 
(~2.4s each) 

 Data Extraction Phase Insignificant 

  Inverse Coordinate Transformation Insignificant 

  Bit Decisions Insignificant 

Tests were run on a Dell Optiplex Pentium 4 3.2 GHz machine. Run times 
are system dependent. The time reported are total times spent in each step for 
three iterations of the whole algorithm. The test images contained three 
markers over a complex background. Times shown are for a single image. 


