Efficient Brain MRI Segmentation for 3D Printing Applications
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Background Experimental Results 3D Printing Results

Motivation Image Processing Algorithm
« Brain folding governed by thin plate mechanics [2]
 MRI segmentation useful for finite element simulation, 3D
printing [4]
 Applications to neurosurgery, injury simulation [4]
« Segmentation remains bottleneck in this workflow: requires ~1
day of work even with expensive software
 Goal: create algorithm for fast brain MRI segmentation
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on statistics, edge detection, energy
minimization [1] [5] [7]
 Active contour methods very promising

— natural connection to brain folding
mechanics [2] [4] Active contours fit spline to

. D . tour with minimal 3
. 3D printing applications almost entirely c°"tour With minimal energy [3]
unexplored

 Printed via fused deposition modeling

Conclusions

 Presented algorithm effective for extracting brain region
 Less effective at removing eyes, brain stem, meninges
 Nonlinear filtering increases effectiveness of active contours
Step 2: Apply gamma filter ~ Step 3: Segment white matter via Step 4: Apply gamma filter (y=1.5)  Morphological post-processing improves surface rendering

« Suitable segmentation for 3D printing applications

(y=2.0) to enhance white active contour, convex hull initial to enhance all brain matter
matter guess

Mathematical Framework
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Active Contour Model

Brain mechanics governed by:
E. t}d Pt d’v
1—V§ﬁds4+ “dsz ~ 9

Treat contour as zero level set: v(s) = {(x,y) | o(t = 0,x,y) = 0}
Evolve according to Hamilton-Jacobi equation: ¢, = F|VQ]
This study used model from [3]:
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 Improve accuracy for use in FEM mesh
extraction

« Combine with statistical techniques to
improve initial segmentation

 Improve backward propagation error via
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Step 5: Segment with active Step 6: Threshold with Step 7: Use morphological , = . . g
contour, use white matter as average minimum centroid operations to post-process . . . tissue-specific segmentation
op 5 gi Vo )\ 2,y 2| —o initial ith k lusteri K f teb 6 FEM simulation of brain ]
9 = (@) | 1 div Vol | - v —A1(uo — c1)® + Xo(up — @)%) | = initial guess with k-means clustering mask from step 6. injury stresses, from [4] . Further develop brain analogues
: Results o ‘
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