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1 Project description

Localization-based super-resolution microscopy such as STORM and (F)PALM has advanced the
resolution of optical microscopy up to tens of nanometers. Those techniques capture thousands of
images and computationally locates sparsely-excited single molecules at sub-pixel level. The esti-
mated locations are accumulated from the multiple images to reconstruct a single image achieving
spatial resolution beyond optical diffraction limit. The algorithm was initially developed to esti-
mate locations of completely-isolated emitters and was inherently not applicable for images with
high molecular densities. This limitation increased the required number of images and restricted
temporal resolution. To overcome this limitation, a method based on a sparsity promoting prior was
applied to estimate the locations of single molecules whose emissions are spatially overlapping [1].
The method achieved 3 sec temporal resolution and performed live cell imaging. While some meth-
ods have already achieved accurate localization almost close to Cramér-Rao lower bound, there
are trade-offs between accuracy and temporal resolution. Tens of algorithms have been developed
for the localization based on different approach, and their performance has been quantitatively
analyzed with a set of consistent criteria [2].

Even though most algorithms estimate the locations in 2D, several algorithms have been ex-
tended to estimate 3D locations from a single image by encoding axial information on a point
spread function (PSF). For example, DH-PSF is designed to change its angle along optical axis so
that the depth of an emitter can be estimated from the captured angle. While the 3D localiza-
tion from low density images has been becoming matured, it is still challenging for high density
images. Toward this difficulty, one initial attempt combined the dictionary-based sparse recovery
with double-helix PSF (DH-PSF) [3]. Their method exploits a dictionary whose columns store 2D
images of DH-PSFs shifted over a 3D super-resolution grid. Even though their method was shown
to be effective for high density images, it incurs expensive computational cost to handle the huge
dictionary so that an input image with more than 100 × 100 pixels is impractical. Therefore, a
large input image must be split into a number of small patches.

To overcome this limitation, we identify the image formation model of 3D single molecule
localization microscopy with convolutional sparse model. Since our approach stores only a set of
kernels with small support, a large input image can be used at a time. Furthermore, by exploiting
a fast deconvolution algorithm for convolutional sparse model [4, 5], we develop a computationally
efficient algorithm for 3D localization.
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2 Plan

This project involves image deconvolution, filtering, and discrete Fourier transform taught in EE368.
We plan to implement an image capture simulator of sparsely-located emitters in three dimensional
space and develop a sparse recovery algorithm for 3D-localization microscopy. The simulator and
the algorithm will be implemented on MATLAB. The developed algorithm will be characterized
based on the simulated images. We also plan to explore another way to improve robustness and
localization accuracy of the estimation by following approaches introduced for sparse spike decon-
volution [6].
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