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Abstract—This article describes a system that takes a pho-
tograph of a printed equation and produces a KIEX code
representation. The process uses adaptive thresholding with
mean filtering, morphological edge smoothing, and the Hough
transform for image binarization and skew correction. The
project uses Hu invariant moments and circular topology to
match characters against a database of characters. The algorithm
then assembles the appropriate IXTEX code from the detected
characters. This system is able to detect 93.6% of characters in
ideal images and 86.2% of characters in real-world photographs
when combining two different skew methods (74%-79%).

I. INTRODUCTION

KKTEX is a powerful typesetting system that is extremely
useful for technical documents, particularly mathematical
equations. However, once rendered, the output cannot be
modified without access to the underlying code. Re-coding
lengthy equations is time consuming and prone to errors. The
ability to take a photograph of an existing equation printed
in a textbook, homework assignment or technical article and
to produce editable KIEX code solves this problem. The
challenges to accomplishing this involve cleanly converting
the photograph to a binary image, correcting skew from the
horizontal, correctly segmenting each individual character,
matching the characters to a database of characters, and finally
generating the correct ISIEX representation of the equation.

II. RELATED WORK

The advent of smartphones has prompted the rise of appli-

cations that automatically recognize and solve mathematical
equations using a built in camera; one example is the popular
PhotoMath application [1]. However, less work has gone into
translating equations into I&IEX code.
The problem of character recognition has also seen numer-
ous techniques that have had varying levels of success.This
includes a basic template matching algorithm using mor-
phological operators with additional character properties [2].
Some have used morphological operators with only portions of
characters to reduce the operator dataset and detect characters
based on certain combinations of matched operators [3].
Others have used various region-based invariant moments such
as the Hu, Zernike, and Krawtchouk moments [4] and circular
topology of individual characters in an effort to have scale,
translation, and rotation robustness [5]. This project combines
the use of the Hu moments with circular topology.

III. PROCESS FLOW

The following processing pipeline converts an image of an
equation to IIEX code. First, the image is captured; the target
use-case does this through a smartphone camera. Next, the
image is binarized with a white background and black char-
acters. Then, skew is corrected so the equation in the image
is horizontal. Afterwards, segmentation algorithms find each
contiguous character in the equation, extract a feature vector
for each, and identify the characters using nearest neighbor
classification. Finally, an algorithm assembles the recognized
characters into ISTgX code. The current implementation of the
process outputs the resultant code as a .tex file to be used
as needed. The following sections describe each part of the
pipeline in more detail.

A. Binarization

The input RGB image is first converted into a binary
image for processing. We found that treating scanned images
differently from smartphone photographs gave the best results.
In order to differentiate between the two image types, an image
is first converted to grayscale. Then, we look at the proportion
of pixels that are mid-gray, defined as having an 8-bit intensity
value between 15 and 240, inclusive. If this proportion is less
than 0.1, we classify the image as a scanned or screenshot
image; otherwise, we classify the image as a photograph.
The following two sections describe the binarization method
carried out for each class of image.

1) Smartphone Photographs: Photographs taken by a
smartphone invariably contain uneven lighting and page imper-
fections. We perform adaptive thresholding with noise removal
to compensate. First, if the image is high-resolution, the image
is blurred with a Gaussian filter to smooth edges and remove
high frequency noise. This pre-filtering is very beneficial for
character recognition in high-resolution images but actually
has a detrimental effect for low-resolution images due to the
small number of total pixels. We empirically determined that
an image with more than 2000 x 1000 pixels is well classified
as high-resolution for use with a 10 x 10 Gaussian filter with
standard deviation of 3.

We use adaptive thresholding for the binarization in order
to compensate for uneven lighting. The window size is set at
1/60™ of the smaller dimension of the image. This adaptive
window size was chosen in order to adequately handle uneven
lighting while still being small enough to preserve the integrity
of most of the characters. To eliminate the overhead of
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Fig. 1: Image with Problematic Non-Horizontal Line

performing Otsu’s method on each window, we leverage the
fact that each image consists only of black text or white
background. Thus, we use the window mean minus 10 as the
threshold, with the offset of 10 to eliminate the effect of noise
in the background. The window means are calculated quickly
by convolving with an averaging filter; subtracting the offset
from the output creates our threshold matrix. Then, we take
the difference of the image and the thresholds, allowing us
to produce the binary image by thresholding this difference
matrix with 0.

After producing the binary image, we invert it so that the
foreground is now the text and noise. We remove the noise
in the background by performing a morphological opening
operation. Afterwards, we perform a closing operation to close
gaps in character edges. Finally, since the chosen window size
may have created gaps in the middle of some characters with
thick strokes, we perform small hole filling. We then return
the output image to the original polarity in order to obtain the
final binarized output.

2) Scans and PDF Screenshots: Scans and PDF screenshots
should not require lighting correction. To prevent excessive
runtime and unnecessary distortion, we perform Otsu’s method
for these images.

B. Skew Correction

We then correct the binarized image for rotations. To com-
pute the dominant orientation, we take the Hough transform.
Fortunately, most equations have multiple horizontal lines,
such as fraction bars, equal signs, and negative signs, as seen
in Figure 2. This means that the dominant orientation is usually
given by the correct, horizontal orientation. In order to guard
against large magnitude peaks given by long diagonal lines,
such as the diagonal division bar in Figure 1, we consider the
top four magnitude Hough peaks and choose the mode of the
orientations.

Also, while the image in Figure 2 is rotated by a small
positive angle, the orientation in Hough space is given as the
angle between the normal and the horizontal axis, which is
the complement of our desired angle.

For visualization, in Figure 3, we want 6, but the Hough
transform gives us p. However, we easily correct for this by
subtracting 90°. After derotating the image we perform edge
softening if the detected rotation angle is large. Significant
rotations introduce quantization errors along straight lines,
manifesting in jagged edges that are detrimental to character
recognition. Currently, we soften the edges using an opening
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Fig. 2: Skewed Binarized Image

Fig. 3: Skew angles

operation. The output of the Skew Correction algorithm is fed
into the Segmentation algorithm of the Character Matching
portion of the pipeline, described in the next section.

C. Segmentation

Because characters are matched individually, the characters
are first extracted from the derotation algorithm output. We
considered several approaches, such as recursive projection
segmentation [2], but decided to use centroids and bounding
boxes of edge maps for simplicity and for the ability to
extract characters surrounded by others (such as under a square
root). First, the edge map is obtained by eroding the inverted
image and then XORing that with the original inverted image,
resulting in a white edge map on a black background. Then, for
each edge, we extract its centroid, bounding box and convex
hull. This successfully extracts many characters, but we still
must handle numerous edge cases. For example, this method
can produce extraneous segmentations with characters such as
B that have inner contours, as shown in Figure 4.

Thus, if a character’s convex hull is fully contained within
another convex hull, we examine the edge map to determine
if the outer character fully surrounds the inner character. If
so, we discard the inner segmentation. This additional edge
check is necessary before discarding the inner segmentation
for proper behavior on equations with a square root symbol,



Fig. 4: Segmented B

Fig. 5: Segmented Square Root

such as in Figure 5 where several characters underneath the
square root are completely within its convex hull.

Finally, we extract each bounding box region and keep the
largest single character within each region to extract only the
character of interest in cases like the square root where other
characters are contained in its bounding box.

D. Character Identifier

Afterwards, we build an identification profile for each
segmented character. The identification profile is a twenty-two
element vector used to match the segmented character with its
equivalent in the template database. We chose these charac-
teristics to be invariant to translation, scaling, and rotation.
Specifically, we integrated the usage of the following features
that have been used separately in literature: the normalized
central moment of inertia, circular topology [5], and Hu
Invariant Moments [4]. The first element in the vector is the
normalized central moment of inertia. The central moment
of inertia is translation- and rotation-invariant; normalization
renders it scale-invariant [5]. The following equation calculates
the moment:

S (@i — en)? + (yi — 0)?)
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Fig. 6: Count: [0 334 3 4 4 4]

where N is the total number of character pixels in the image,
and ¢, and c, are the coordinates of the character’s centroid.

The next fifteen elements are extracted from circular topol-
ogy. Since the circle is geometrically rotationally invariant,
the topology of the character along a circular path is likewise
invariant. Eight equally spaced concentric circles are centered
at the characters centroid. We determine the spacing of the
circles by finding the maximum distance from the centroid to
an edge of the character and then dividing by k£ + 1 where &
is the number of circles. We used & = 8 based on empirical
results and previous literature [5]. The first eight elements of
these topology elements are the number of times each circle
crosses the character.

Note that we used k + 1 as the spacing but only considered
the first k£ circles. We found that having the outer circle on the
edge of the character created topological aliasing errors due
to imperfections on the character edges.

Figure 6 shows the eight circles along with the topology
count from the inner circle to the outer circle for the template
character of 7. The counts can be obtained by unwrapping a
circle into a line segment and then counting the number of
black segments. Note the extra count for the second circle
from double counting on the right where the circle is “cut”
to unwrap it. Removing this extra count did not improve
matching performance, so it was left.

The last seven topology elements measure the spacing
between the character crossings for each circle to differentiate
between characters with equal numbers of circle intersections.
We take the two longest background arcs from each circle,
find the difference, and normalize by the circumference of

that circle:
D; = arca —arc 2)

"~ circumference

This is done for the k — 1 largest circles; we ignore the
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Fig. 7: Character Palette

innermost circle which is nearly always either completely
background or completely character.

Finally, we calculate the Hu Invariant Moments [6]. The
seven Hu moments are invariant to translation, scaling, and
rotation [7]. The first Hu Moment is essentially the normalized
central moment of inertia previously calculated, so only the
last six moments are used. With u,,, as the central moment of
order p and ¢:
= M—g(], y=1+ k|

Hoo 2
Hy = (1120 — 1002)* + 417,

Hs = (130 — 3m2)” + (3121 — 103)°

Hy = (130 +m12)% + (021 — 103)?

lpq

Hs = (130 — 3m2)* (30 + m2)*[(30 + m12)* — 3(n21 + 103)°]

+ (3121 — n03) (21 + 103)[3(n30 + 1m12)* — (21 + 703)?]
Hg = (n20 — 102)[(m30 + m12)* — (021 + 103)?]
+ 4m1 (30 + m2) (M2 + Mo3)
Hy = (3021 — nos) (30 + m12)[(n30 + m2)? — 3(n21 + no3)”]
— (130 — 3m2) (M21 + 103)[3(m30 + M2)* — (m21 + 770(33))2]

E. Matching

For feasibility, we defined a character palette that contains
the possible characters that can be identified, shown in Figure
7. We created a template database by pre-calculating the
character identifiers for every character in the palette and
associating with the appropriate IKTEX code.

Then, we classified each character found by the segmen-
tation algorithm through a nearest neighbor classifier using
Manhattan distance, which produced the best results compared
to other types of distances tested, and we output the best match
as the detected character. This along with the centroid and
bounding box with respect to the original equation are passed
to the equation assembly function.

F. Equation Assembly

We assemble each equation sequentially from left to right
using each recognized character’s bounding box. Notably, as

we process each character, we keep track of a “previous”
centroid to detect the presence of superscripts and subscripts.
This is not always the centroid of the previous matched
character. For example, if the previous character were a part
of a fraction, we need to consider the centroid of the fraction
bar instead. The basic flow of the algorithm is as follows:

If the current character’s bounding box does not overlap
with any subsequent bounding boxes, we add the character to
the equation directly using the following rules:

1) If the lower-left corner of the bounding box is above the
height of the previous centroid, either a superscript or
the end of a subscript has occurred. We keep track of a
subscript flag to differentiate the two.

If the upper-left corner of the bounding box is below
the height of the previous centroid, we carry out the
opposite operation from above.

Otherwise, if the character is a IZIEX control sequence,
’\” is pre-appended to the character and a space is post-
appended. Then the aggregate is added to the equation.
Otherwise, the character is added directly with no mod-
ifications.

2)

3)

4)

If the current character overlaps with subsequent bounding
boxes, we check for specific cases:

1) If the character is ’-> and only overlaps with a singe

other ’-’, we appen to the equation and skip the

overlapping ’-’.

If the character is a square-root, we select all of the sub-

sequent overlapping characters and recursively assemble

a sub-equation. Then, we append the appropriate ITEX

sequence to the total equation.

3) If the character is ’-’ and does not only overlap with a
single other ’-’:

a) If the width of the ’-’ is a large portion of the
width of the union of the overlapping bounding
boxes, we recognize the overlapping region as a
fraction. We divide the characters into denominator
and numerator sets. Then we recursively assemble
these two sets into sub-equations. Finally, the frac-
tion is assembled into the proper I£IEX format and
appended to the total equation.

Otherwise, it is a negative sign, and we continue
to the next case.

s__3

2)

b)

4) We look for a limit-enabled control sequence (sum-
mation, integration, and product), and then recursively
assemble the equations of the upper and bottom limits
as appropriate.

This logic is limited in the number of IXTEX constructions
supported. For example, we do not support all of the numerous
ISTEX control sequences. Also, variable modifiers such as the
dot or bar notation will not be correctly assembled.

IV. RESULTS

The binarization method yielded no problems on our test
cases. Furthermore, compared to performing Adaptive Thresh-
olding with Otsu’s Method, our heuristic implementation runs
in about half the time. The results are shown in Table I.
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TABLE I: Time for Binarization on Demo_equation.jpg

10 Runs

20 Runs

Mean Threshold

5.743 seconds

11.529 seconds

11.232 seconds

23.221 seconds

Otsus Method

We also performed derotation tests on our fifteen “clean”
equations. This “clean” set was obtained by exporting direct
KTEX compilations as .jpg files. See Figure 8 for an example.
We manually rotated each “clean” equation by an angle and
ran the derotation algorithm on the resulting image. We then
defined the error to be the absolute value of the difference
between the detected angle and the rotated angle. The results
are graphed in Figure 9. Our algorithm resulted in errors
below 2 degrees in magnitude for most of our test equations.
Equation 3 is the outlier. This equation was shown above
in Figure 1. Despite the guards described in Section III-B,
our algorithm still registers the diagonal division bar as the
dominant orientation for most rotation angles.

We also tested the matching algorithm in several ways.
First, the database characters were rescaled before performing
character matching. Over a scale range of 0.5 to 1.25 the
overall correct percentage was 95.3% as shown in Table IL

TABLE II: Robustness to Scaling

[ Scale | # Correct | % Correct
0.5 103/116 88.8%
0.75 111/116 95.7%
1.0 116/116 100.0%
1.25 112/116 96.6%

Next, we ran the full pipeline on the fifteen equations in the
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Fig. 10: Robustness to Rotation

clean set. We observed a matching performance of 147/157
characters for a rate of 93.6%. The missed characters are
partly from false positives and partly from an equation that
was incorrectly derotated due to the presence of a A which
acted like the division bar in the test equation in Figure 1. We
also tested the overall system for robustness to rotation. The
fifteen clean equations above were rotated from —25° degrees
to +15° in increments of 5°, and the entire process was run
on each rotated equation.

Figure 10 shows the detection percentage throughout the
rotation test. The overall matching percentage is not signifi-
cantly affected, except at 10° where the deskewing algorithm
again was confused by a specific image.

Finally, the algorithm was tested on ten photographs of
equations under uneven lighting with a skew, such as in Figure
11. Again, the deskewing method would sometimes be con-
fused by odd characters or by the ”\” division symbol and ”=".
We investigated a modification to our deskewing algorithm in
which we kept only the dominant Hough peak rather than
considering the top four peaks. This modification actually
handled the ”\” worse but handled the odd characters better.
The original and modified algorithms produced recognition
rates of 98/123 for 79.7% and 91/123 for 74%, respectively.
Combining the best equation results from these two methods
gave a combined result of 86.2% correctly matched characters.

V. LIMITATIONS

The deskewing algorithm presented the most limitations.
Most of these limitations manifested only in short equations
where diagonal lines in characters were dominant enough to
outweigh the horizontal lines in the Hough space. However, in
practice, this could be overcome by underlining each equation
by hand. In fact, this would be a very reasonable augmentation
for extending this project to handwritten equations.

Also, our current character palette for character matching
is limited in comparison to the huge variety of I£TEX char-
acters available. Our process is modular enough that adding
additional characters would be simple; we would just add the



Fig. 11: Sample Test Image

character to the palette with the appropriate label and the
algorithm would proceed as usual. However, we would need to
perform additional validations to ensure that no aliasing effects
would be introduced. In the same vein, our equation assembly
algorithm is limited to recognizing certain patterns. However,
in this case, additional IXTEX equation patterns should be easy
to implement. However, one major limitation of the assembler
is fractional exponents. As seen in Figure 8, the fraction in
the exponent is very large. Our current algorithm correctly
detects the exponent, and even the nested exponent, but it
fails to detect that the following dx is outside of the exponent.
Therefore, we have imposed the constraint that all fractions
within exponents must occur at the end of the exponent, and
the algorithm will automatically end any exponent after a
fraction is appended. Further work must be done to remove
this limitation.

VI. FURTHER WORK

Relevant future additions to our algorithm include the ability
to detect and extract an equation from a page with background
text and clutter. The current algorithm only supports equations
with completely empty backgrounds.

This program has also been architected to be readily ex-
tended to recognize handwritten equations. We chose the
features for character matching to be invariant to scale and
rotation to support the huge variances in handwriting. Possible
next steps towards supporting handwritten equations include
machine learning to train a linear predictor. This would require
the gathering of a training data set rather than a single
character palette, but the same feature vector could be utilized.

Further work can also be done to increase the reliability
of the current matching algorithm. The matching algorithm
exhibits susceptibility to binarized and smoothed characters
that were not perfect PDF images. This could be improved by
reducing distortion from the binarization algorithm and adding
non-perfect characters to the template database.

The robustness could also be improved by implementing a
heuristic based error correction algorithm for the matching
system. We could experimentally determine characters that

tended to produce consistent false positives and take appropri-
ate compensation actions for these characters. For example, we
have noticed that the ”2” is often misclassified as an uppercase
”7”. Knowing this, we could add an additional check when
detecting the uppercase ”Z” before final classification and
check whether the top is straight or curved.

Finally, our algorithm is rather slow. We made some at-
tempts to decrease our algorithm’s runtime such as implement-
ing the heuristic based adaptive thresholding and investigating
frequency based deskewing algorithms [8]. However, speed
was not an objective in our original project formulation. As the
project matures, though, algorithm optimization will become a
central goal for practicality. Future tasks related to this include
migrating to a compiled language such as C++ and rigorous
algorithm analysis.
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APPENDIX

All test equation images can be found in the ’Equations’
directory of the attached source code archive.
The project workload was divided between the group members
as follows:
Jim Brewer: Data Acquisition, Character Segmentation, Char-
acter Identification, Character Matching, Testing.
James Sun: Data Acquisition, Lighting Compensation, Image
Derotation, Equation Assembly, Testing.
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