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Abstract
In this paper, we explore automated aes-
thetic evaluation of photographs using ma-
chine learning and image processing tech-
niques. We theorize that the spatial dis-
tribution of certain visual elements within
a given image correlates with its aesthetic
quality. To this end, we present a novel ap-
proach wherein we model each photograph
as a set of tiles, extract visual features from
each tile, and train a classifier on the re-
sulting features along with the images’ aes-
thetics ratings. Our model achieves a 10-
fold cross-validation classification success
rate of 83.60%, corroborating the efficacy
of our methodology and therefore showing
promise for future development.

1. Introduction

Aesthetics in photography are highly subjective. The
average individual may judge the quality of a photo-
graph simply by gut feeling; in contrast, a photogra-
pher might evaluate a photograph he or she captures
vis-a-vis technical criteria such as composition, con-
trast, and sharpness. Towards fulfilling these crite-
ria, photographers follow many rules of thumb. The
actual and relative visual impact of doing so for the
general public, however, remains unclear.

In our project, we show that the existence of cer-
tain characteristics does indeed make an image more
aesthetically-pleasing in general. We achieve this by
building a machine learning pipeline that trains a hy-
pothesis capable of classifying images as either ex-
hibiting high levels of aesthetic quality or not.

The potential impact of building a system to solve
this problem is broad. For example, by implement-

ing such a system, websites with community-sourced
images can programmatically filter out bad images
to maintain the desired quality of content. Cam-
eras can provide real-time visual feedback to help
users improve their photographic skills. Moreover,
from a cognitive standpoint, solving this problem
may lend interesting insight towards how humans
perceive beauty.

We begin by identifying visual features that we be-
lieve correlate with the aesthetic quality of a photo-
graph. We then build a learning pipeline that ex-
tracts these features from images on a per-tile basis
and uses them along with the images’ aesthetics rat-
ings to train a classifier. In this manner, we endow the
classifier with the freedom to infer spatial relation-
ships amongst features that correlate with an image’s
aesthetics.

2. Related work

There have been several efforts to tackle this problem
from different angles within the past decade. Pogac-
nik et al [1] believed that the features depended heav-
ily on identification of the subject of the photograph.
Datta et al [2] evaluated the performance of different
machine learning models (support vector machines,
decision trees) on the problem. Ke et al [3] focused
on extracting perceptual factors important to profes-
sional photographers, such as color, noise, blur, and
spatial distribution of edges.

Also, in contrast to our approach, it is interesting to
note that these studies have focused primarily on ex-
tracting features that attempt to capture prior beliefs
on the spatial orientation of visual elements within
the image. For example, Datta et al attempted to
model rule-of-thirds composition by computing the
average hue, saturation, and luminance of the inner
thirds rectangle, and Pogacnik et al defined features



Figure 1. Tiling scheme applied to image by learning
pipeline.

that assessed adherence to a multitude of composi-
tional rules as well as the positioning of the subject
relative to the image’s frame.

3. Dataset

Our learning pipeline downloads images and their
average aesthetic ratings from two separate datasets.

The first is an image database hosted by photo.net, a
photo sharing website for photographers. The index
file we use to locate images was generated by Datta
et al. Members of photo.net can upload and critique
each others photographs and rate each photograph
with a number between 1 and 7, with 7 being the best
possible rating. Due to the wide range and subjectiv-
ity of ratings, we choose to only use photographs with
ratings above 6 or below 4.2, which yields a dataset
containing 1700 images split evenly between positive
labels and negative labels.

The second comprises images scraped from DPChal-
lenge, another photo sharing website for photogra-
phers. The index file we used to locate images was
generated by Murray et al [4]. Following guidelines
from prior work, we choose to use photographs with
ratings above 7.2 or below 3.4, resulting in a dataset
containing 2000 images split evenly between positive
and negative labels.

4. Feature extraction

Prior to extracting features, we partition each image
into five-by-five equally-sized tiles (Figure 1). By ex-
tracting features on a per-tile basis, the learning algo-
rithm can identify regions of interest and infer rela-
tionships between feature-tile pairs that indicate aes-
thetic quality. For example, in the case of the image
depicted in Figure 1, we surmise that the learning al-

gorithm would be able to discern the well-composed
framing of the pier from the features extracted from
its containing tiles with respect to those extracted
from the surrounding tiles.

Below, we describe the features we extract from each
image tile.

Subject detection: Strong edges distinguish the sub-
ject from the image’s background. To quantify the
degree of subject-background separation, we apply a
Sobel filter to each image tile, binarize the result via
Otsu’s method, and compute the proportion of pixels
in the tile that are edge pixels:

fsd =
∑

(x,y)∈Tile

1{I(x, y) = Edge}

Color palette: A photograph’s color composition can
dramatically influence how a person perceives a pho-
tograph. We capture the color diversity of a pho-
tograph using a color histogram that subdivides the
three dimensional RGB color space into 64 equally
sized bins. Since each pixel can take on one of 256 dis-
crete values in each color channel, this results in each
bin being a cube with 16 possible values in each di-
mension. We normalize each bin’s count by the total
pixel count so that it is invariant to image dimensions.

Detail: Higher levels of detail are generally desirable
for photographs, particularly for its subject. To ap-
proximate the amount of detail, we compare the num-
ber of edge pixels of a Gaussian filtered version of
the image tile to the number of edge pixels within the
original image tile, i.e.

fd =

∑
(x,y)∈Tile 1{Ifiltered(x, y) = Edge}∑

(x,y)∈Tile 1{I(x, y) = Edge}

For an image tile that is exceptionally detailed, many
of the higher-frequency edges in the region would be
removed by the Gaussian filter. Consequently, we
would expect fd to be closer to 0. Conversely, for a
tile that lacks detail, since few edges exist in the re-
gion, applying the Gaussian filter would impart little
change to the number of edges. In this case, we would
expect fd to be closer to 1.

Hue: To the human eye, certain color combinations
are more appealing than others. To capture this, for
each image tile, we compute the proportion of pix-
els that correspond to a particular hue. We discretize
hues into five regions, corresponding to red, yellow,
green, blue, and purple.

Saturation: Saturation measures the intensity of a
color. We extract the average saturation value for each
image tile.



Figure 2. Block diagram of learning pipeline.

Contrast: Contrast is the difference in color or bright-
ness amongst regions in an image. Generally, the
higher the contrast, the more distinguishable objects
are from one another. We approximate the contrast
within each image tile by calculating the standard de-
viation of the grayscale intensities.

Blur: Depending on the image region, blurriness may
or may not be desirable. Poor technique or camera
shake tends to yield images that are blurry across the
entire frame, which is generally undesirable. On the
other hand, low depth-of-field images with blurred
out-of-focus highlights (“bokeh”) that complement
sharp subjects are often regarded as being pleasing.

To efficiently estimate the amount of blur within an
image, we calculate the variance of the Laplacian of
the image. Low variance corresponds to blurrier im-
ages, and high variance to sharper images.

Noise: The desirability of visual noise is contextual.
For most modern images and for images that con-
vey positive emotions, noise is generally undesirable.
For images that convey negative semantics, however,
noise may be desirable to accentuate their visual im-
pact. We measure noise by calculating the image’s en-
tropy.

Saliency: The saliency of the subject within a photo-
graph has a significant impact on the perceived aes-
thetic quality of the photograph. We post-process
each image to separate the salient region from the
background using a center-vs-surround approach de-
scribed in Achanta et al [5]. We then sum the number
of salient pixels per image tile and normalize by the
tile size.

5. Methods

Figure 2 depicts a high-level block diagram of the
learning pipeline we built. The pipeline comprises
three main components: an image scraper, a bank of
feature extractors, and a learning algorithm.

For each of the features we describe in Section 3, there
exists a feature extractor function that accepts an im-
age as an input, calculates the feature value, and in-
serts the feature-value mapping into a sparse feature
vector allocated for the image. We rely on image pro-
cessing algorithms implemented in the scikit-image
library for many of these functions.

After the pipeline generates feature vectors for all im-
ages in the training set, it uses them to train a clas-
sifier. For the learning algorithm, we experimented
with support vector machines (SVM), random forests,
and gradient tree boosting.

SVM: The SVM learning algorithm with `1 regu-
larization involves solving the primal optimization
problem

min
γ,w,b

1

2
||w||2 + C

m∑
i=1

ξi

subject to y(i)(wT x(i) + b) ≥ 1− ξi, i = 1, ...,m

, the dual of which is

max
α

m∑
i=1

αi −
1

2

m∑
i,j=1

y(i)y(j)αiαj〈x(i), x(j)〉

subject to 0 ≤ αi ≤ C, i = 1, ...,m
m∑
i=1

αiy
(i) = 0

Accordingly, provided that we find the values of α
that maximize the dual optimization problem, the hy-
pothesis can be formulated as

h(x) =

{
1 if

∑m
i=1 αiy

(i)〈x(i), x〉+ b ≥ 0
−1 otherwise

Note that since the dual optimization problem and
hypothesis can be expressed as inner products be-
tween input feature vectors, we can replace each in-
ner product with a kernel applied to the two in-
put vectors, which allows us to train our classifier
and perform classification in a higher-dimensional
feature space. This characteristic of SVMs makes
them well-suited for our problem since we speculate
that non-linear relationships amongst multiple fea-
tures influence image aesthetic quality. For our sys-
tem, we choose to use the Gaussian kernel K(x, y) =
exp

(
γ||x− y||22

)
, which corresponds to an infinite-

dimensional feature mapping.

Random forest: Random forests comprise collections
of decision trees. Each decision tree is grown by se-
lecting a random subset of input variables to serve as
candidates for splitting at a particular node. Predic-



tion then involves taking the average of the predic-
tions of all the constituent trees:

h(x) = sign

(
1

m

m∑
i=1

Ti(x)

)

Because of the way each decision tree is constructed,
the variance of the average prediction is less than that
of any individual prediction. It is this characteris-
tic that makes random forests more resistant to over-
fitting than decision trees, and, thus, generally have
much higher performance.

Gradient tree boosting: Boosting is a powerful learn-
ing method that sequentially applies weak classifica-
tion algorithms to reweighted versions of the training
data, with the reweighting done in such a way that,
between every pair of classifiers in the sequence, the
examples that were misclassified by the previous clas-
sifier are weighted higher for the next classifier. In
this manner, each subsequent classifier in the ensem-
ble is forced to concentrate on correctly classifying the
examples that were previously misclassified.

In gradient tree boosting, or gradient-boosted regres-
sion trees (GBRT), our weak classifiers are decision
trees. After fitting the trees, the predictions from all
the decision trees are weighted and combined to form
the final prediction:

h(x) = sign

(
m∑
i=1

αiTi(x)

)

In literature, tree boosting has been identified as be-
ing one of the best learning algorithms available [6].

6. Experimental results and analysis

For each learning algorithm, we measure the per-
formance of our classifier using 10-fold cross valida-
tion on the photo.net dataset and the DPChallenge
dataset. We run backward feature selection to elimi-
nate ineffective features to improve classification per-
formance.

For SVM, we tuned our parameters using grid search,
which ultimately led us to use C = 1 and γ = 0.1. For
random forest, we used 300 decision trees. We deter-
mined this value by empirically finding the asymp-
totic limit to the generalization error with respect
to the number of decision trees used. For gradient
tree boosting, we used 200 decision trees and a sub-
sampling coefficient of 0.9. Using a sub-sampling co-
efficient smaller than 1 allows us to trade off vari-
ance for bias, which thereby mitigates overfitting and
hence improves generalization performance.

SVM RF GBRT
photo.net 78.71% 78.58% 80.88%

DPChallenge 82.62% 82.85% 83.60%

Table 1. 10-fold classification accuracy

Actual
label

Predicted label
1 0

1 TP
80.12%

FN
19.88%

0 FP
18.35%

TN
81.65%

Figure 3. Confusion matrix for 10-fold cross validation with
GBRT on photo.net dataset.

Table 1 shows our 10-fold cross-validation accuracy
for each of the learning algorithms. For both datasets,
we got the highest performance with GBRTs, with ac-
curacies of 80.88% and 83.60%. That we see similar
quality of results for both datasets signifies that our
methodology is sound.

Figure 3 shows the confusion matrix for 10-fold cross-
validation using GBRTs on the photo.net dataset.
The true positive and false negative rates are ap-
proximately symmetric with the true negative and
false positive rates, respectively, which signifies that
our classifier is not biased towards predicting a cer-
tain class. This also holds true for the DPChallenge
dataset.

To analyze the deficiencies of our methodology, we
examine images that our classifier misclassified.

Figure 4 shows an example of a negative image from
the photo.net dataset that the classifier mispredicted
as being positive. Note that the image is compo-
sitionally sound – the subject is clearly distinguish-
able from the background, fills most of the frame, is
well-balanced in the frame, and has components that
lie along the rule-of-thirds axes. The hot-pink back-
ground, however, is incredibly jarring, and the subject
matter is mundane and lacks significance. Unfortu-
nately, because it discretizes color features so coarsely,
the classifier is likely not able to effectively differen-
tiate between different shades of colors, such as the
artificial pink shade of this image’s background and
the warm red shade of a beautiful sunset. More-
over, it has no way of gleaning meaning from images.
We therefore believe that it is primarily due to these
shortcomings that our classifier misclassified this par-
ticular image.



Figure 4. Negative image classified as positive by the
model.

Figure 5. Positive image classified as negative by the model.

Figure 5 exhibits a photograph from the DPChal-
lenge dataset where our classifier predicts a false neg-
ative. While the photograph follows good composi-
tion techniques, the subject has few high frequency
edges, and most of the tiles are considered blurry.
Our blur feature carries heavy weight with regards to
the prediction for the DPChallenge dataset. Further-
more, the current method of detecting the salient re-
gion is not consistently reliable, so despite this photo-
graph’s having a distinct salient region, the classifier
may deemphasize the contributions of this feature.
We believe that improving our salient region detec-
tion accuracy across all images may enable the classi-
fier to utilize the saliency feature more effectively, and
thus correctly classify this photograph.

Another image our classifier mispredicts as being
negative is shown in Figure 6. The key visual element
of this image is the strong leading lines that draw at-
tention to the hiker – the subject of the image. Lead-
ing lines, however, are global features that are not
well-captured by our tiling methodology, and, thus,
are not considered by the classifier.

In sum, although our classifier performs respectably
well, examining the images it mispredicts reveals
many potential areas of improvement.

Figure 6. Positive image classified as negative by the model.

7. Future work and conclusions

We have demonstrated that modeling an image as
a set of tiles, extracting certain visual features from
each tile, and training a learning algorithm to infer
relationships between tiles yields a high-performing
system that adapts well to different datasets. Thus,
our methodology lays a sound foundation for future
development. In particular, we believe we can fur-
ther improve the accuracy of our system by deriv-
ing global visual features and parsing semantics from
photographs. Our model should also apply to regres-
sion for use cases where numerical ratings are de-
sired. Finally, augmenting the system with the abil-
ity to choose a classifier depending on the identified
mode of a photograph, e.g. portrait or landscape,
may lead to more accurate classification of aesthetic
quality.
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