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Abstract—Image segmentation is a key bottleneck in analysis
of electron microscope (EM) images, made challenging by the
fact that many features in EM images differ not in intensity
but in texture. I have explored several options for texture
segmentation of images, based on feature vectors generated from
local histograms of filtered versions of the image, which are then
classified using a Support Vector Machine (SVM). I find that
while these algorithms perform better than chance, they do not
outperform a naive thresholding algorithm. More work must be
done to optimize feature vectors for better separation and to
improve the SVM classification for better segmentation.

I. INTRODUCTION

Transmission Electron Microscopy (TEM or EM in this
report) allows biologists to observe their specimens with
unparalled level of detail. In addition to the clear benefit
of enhanced spatial resolution due to a smaller diffraction
limit, EM images also reveal many different cellular structures
simultaneously, unlike fluorescence microscopy images, which
typically label at most a few separate structures. Thus EM
provides a holistic, high-resolution view of cells or tissues.

This benefit comes with the cost of increased image com-
plexity and greater difficulty for automatic processing of EM
images. Unlike in a fluorescence microscopy image, function-
ally distinct structures in an EM image may not differ merely
in grayscale intensity but rather in more complex features such
as image texture. This requires more sophisticated algorithms
to parse, and in many cases segmentation of EM images is
still performed manually, creating a significant bottleneck in
the analysis workflow.

A. Related Work

Several previous attempts have been made to classify objects
in EM images based on their texture. Proenca er al. used
several indicators of texture based on spatial correlations in
grayscale intensity, such as image entropy or local variance,
to identify virus particles in EM images [1]. These indicators
supplemented other approaches to segmentation, and were
made simpler by the fact that viruses have extremely well-
defined size, shape, and texture. It is unclear from this work
if texture could be used to segment more unusually shaped
regions.

Gorai et al. used a combination of several feature descriptors
to identify textures in EM images: Local Binary Patterns and
Gabor filters [2]. They found that a combination of filters was
most effective at segmentation of textured regions. However,
the particular structures of interest in that paper were again

small and fairly distinct from the rest of the cell. A robust
algorithm for any general structure in an EM image has not
emerged, and so individual algorithms must be developed for
given structures of interest.

B. Project Goal

In my research I perform a lot of electron microscopy, and
I want to develop a segmentation algorithm that will correctly
pick out the structures I am interested in from EM images.
In order to develop a texture segmentation algorithm, I used
several TEM images that I have taken of my cell of interest, a
fish skin cell. These cells are studied for their ability to move
(in order to heal wounds), and I am particularly interested in
the dense meshwork that the cell polymerizes to power its
movement (Fig. 1). In sections through one of these cells, the
meshwork appears as dark swaths on one side of the cell.
I would like to have an algorithm that would allow me to
identify these dark regions specifically, avoiding other lower-
intensity regions that have different texture on the other side of
the cell. This is the goal of the three segmentation algorithms
I explore in this report. I will describe the approach of each
algorithm and identify the tunable parameters for each (and
the choices for these parameters that I made). I will discuss
the efficacy of each of these methods, and discuss possible
directions to take to improve the algorithms.

II. DESCRIPTION OF THE ALGORITHMS

One challenge in all of these algorithms was that the size
of the images from the electron microscope is huge—several
thousand pixels in each dimension. This dramatically increased
the run time for many of the algorithms I was testing. In order
to proceed more rapidly, I identified a subset of each image
that was most relevant; in the images tested here, I used a
subsection of an image that managed to capture most of a
cell, which had a good representation of different textures,
in particular the dark meshwork texture I am interested in.
I furthermore reduced the size of the image in 2 by bilinear
interpolation between pixels. I determined based on the Fourier
transform of the image that the image was sufficiently over-
sampled that I would not be throwing away too much valuable
high-resolution information by downsampling by a factor of
two.

To simplify the following discussion I define the term local
histogram in a specific sense: a local histogram is a histogram
of the intensity values of a window of some size centered on



Fig. 1. Example EM image of a fish keratocytes. I am interested in the dark
dense meshwork in the fan-like area of the cell (manually segmented in red
on the right). Scale bar 2um.

a particular pixel. Thus a local histogram can be associated
with each pixel and provides some information about the
distribution of image values around that pixel.

A. Adaptive Thresholding

The first algorithm I implemented was a naive algorithm
based on thresholding the image. I employed adaptive thresh-
olding to correct for uneven illumination in the image. Because
intensity of different structures in the cell varied significantly,
I used a large window size to ensure that the same structure
in different areas was thresholded the same way. To ensure
smooth differences in thresholding and to avoid discontinuities
in thresholding due to different thresholds in different local
windows, I thresholded a large window (linear dimensions
equal to 1/10th the image’s linear dimensions), but I only used
the result in a smaller sub-window (1/40th the images linear
dimension). I tried different values for this parameter, but the
result was reasonably robust to the choice of parameter, as
long as the sizes of the large window and small window were
sufficiently different.

I found that employing Otsu’s method was sufficient for ef-
fective thresholding out the meshwork from the area surround-
ing it. As is typical for adaptive thresholding, I had to choose
a cutoff for the variance in (normalized) grayscale intensity
within a window in order to avoid performing thresholding
on a “blank” region of image. I chose this parameter ad-hoc
to be 0.005 (grayscale values normalized from O to 1), and
I found that this supressed thresholding of noise while still
thresholding all “signal” regions.

As expected, many other things were also classified as
*foreground’ by this thresholding approach, including small

regions of dark intensity near the meshwork. I cleaned up
the thresholded image using morphological closing (because
the ‘dark’ region was the region of interest) and small region
removal. I chose the size of the (square) structuring element
and the cutoff size for small regions by eye after looking at
the size of some representative objects I knew I wanted to
exclude.

B. Local Binary Pattern

The next method I implemented was to incorporate a feature
known as a Local Binary Pattern (LBP) [3], [4], which has
been used successfully to identify textures in faces and even in
some EM images. To calculate LBP, a set of 8 pixels around a
reference pixel is chosen, and the grayscale intensity of these
pixels is compared to the reference pixel. The intensity of
each of these 8 pixels can either be higher or lower than the
reference pixel’s intensity, leading to an 8-bit “local binary
pattern” associated with each pixel in the image. This 8-bit
number for each pixel can be mapped to a new grayscale
image, where now each pixel’s intensity value encodes some
information about the spatial variation in grayscales in the
original image. Hopefully this new LBP image will represent
texture more tangibly than the original image. By only looking
at relative intensity, LBP also has the advantage of being
invariant to changes in global intensity, e.g. due to illumination
differences.

The number of possible LBPs can be reduced from 256
to 58 by grouping together LBPs corresponding to “uniform”
differences in intensity. These are defined as LBPs in which
the binarized relative intensity only changes once as one moves
around the center pixel (i.e. moving clockwise aroudn the
center pixel, 01110000 and 11000000 are uniform patterns
while 01100110 is not). An advantage of collecting together all
uniform patterns is that this allows the uniform LBPs (uLBPs)
to be roughly rotation invariant (uniform patterns rotated by
some angle will still be uniform).

I calculated LBPs using 8 pixels approximately 30 pixels
away from a reference pixel. I chose this distance because it
corresponded to a characteristic size scale in the image for
which textures I recognized (such as the speckled texture)
and wanted to distinguish from the meshwork texture. I also
converted these LBPs to uLBPs using a look-up table (found
online on the website Quant Geeks). I tried to code LBP
myself, but found that my implementation was very inefficient.
I then used code from MATLAB Central File Exchange written
by Nikolay S. to calculate LBP efficiently.

The result of finding uLBPs on the image in Fig. 1 is shown
in Fig. 2. Each grayscale value corresponds now to information
about the relative intensity of nearby pixels. It can be hard to
see differences in this image, but by looking closely one can
see that regions of the meshwork texture have a finer pattern of
LBP than the “background” regions which have more speckled
texture. I found that noise in the image had a noticeable effect
on the LBP result: it made the speckled LBP image look even
more speckled. To mitigate this, I applied a 3x3 median filter
prior to calculating LBPs. I found that this helped, but that


http://quantgreeks.com/uniform-local-binary-pattern-in-matlab
http://www.mathworks.com/matlabcentral/fileexchange/36484-local-binary-patterns
http://www.mathworks.com/matlabcentral/fileexchange/36484-local-binary-patterns

Fig. 2. The result of finding Local Binary Patterns (LBP) in an EM image.
Grayscale value correspond to different LBPs, i.e. different arrangements of
relative grayscale intensity around each pixel.

windows of any larger size started to mask the differences in
signal between my desired foreground and background.

I then calculated a feature vector by counting up the oc-
curences of each uLBP in a local window (a 58-bin histogram).
The window size over which this histogram was calculated
was fixed to be 31 pixels. I chose this size because it was
large enough to capture representative samples of texture while
small enough to detect small patches of texture, but this param-
eter could be further tuned as necessary. Because this window
size is fairly large, I calculated an integral histogram for the
image prior to performing the window operation. Similar to an
integral image, each pixel in an integral histogram aggregates
data from pixels above and to the left of it; however, instead
of just summing up the intensity of those pixels, in an integral
histogram one keeps running tallies in a set of specified bins,
and updates it so that each pixel contains a histogram of
the pixel intensities above and to its left. Thus an integral
histogram will be a muldimensional array.

Once I had the feature vector, I needed to train a classifier to
distinguish the foreground features from background features
in the high-dimensional feature space. For this I used the
Support Vector Machine method included in VLFeat. SVM
is a rapid and simple-to-implement machine learning soft-
ware, good for binary classification (which is exactly what
is required for image segmentation). Each feature for image
segmentation corresponds to a single pixel; in the training
image I wanted to segment I had over 1 million pixels,
so I had plenty of data with which to train an SVM. I
had previously manually segmented out regions of texture of
interest; this formed my ground truth for training. I fed into the
algorithm every pixel in the training image, with its associated
foreground or background label.

A limitation of the VLFeat SVM command is that it does
not have a simple way to use nonlinear kernels which are
typically implemented in other versions of SVM (which I did
not realize at first). Thus I was constrained to train only a linear
SVM classifier. This has only one hyperparameter to tune,
which is the regularizer parameter. To choose the best value

of this hyperparameter I performed 5-fold cross-validation on
the entire training data set, choosing logarithmically spaced
values of the regularizer hyperparameter; I chose the value
that had the best average accuracy in the cross-validation test.

One thing I found surprising is that the SVM training
converged very slowly; I kept raising the maximum number
of allowed iterations, and the SVM algorithm would always
terminate by maxing out the number of iterations. I am not
very familiar with the ins and outs of SVM, so I am not sure
what this suggests about my problem, but it is possible that
there were other aspects of the learning procedure that needed
to be optimized; using non-linear kernels would be a good
start.

To test the algorithm, I used a second image which I had
also manually segmented. I applied the exact same procedure
for extracting feature vectors, and then applied the trained
SVM classifer to get the predicted class for each pixel in
the testing image. While a threshold of O in SVM score
is conventionally used to get the predicted classification of
testing data, I also varied the threshold across the range of
scores obtained from the testing data to compute ROC curves.

C. Local Spectral Histogram

The final algorithm I implemented uses local spectral his-
tograms [5]. The basic idea of the method is to construct a
feature vector for each pixel by applying a filter bank to the
image and then concatenate together local histograms from
the response of each filter. The hope is that each filter will
contain some small amount of information about the texture in
a region, and combined together the responses of all different
filters should provide good discriminatory information about
local texture.

I chose a set of 7 filters based on [5]. The first is simply the
intensity of the unfiltered image. I also chose 4 Gabor filters
at different orientations (multiples of 45°). A Gabor filter is
a complex sinusoid at a particular orientation multiplied by
a Gaussian envelope. They are a very flexible filter widely
used for detecting features of particular sizes and orientations.
Gabor filters have many parameters to tune: the orientation
of the sinusoid, the overall size of the Gaussian, and the
aspect ratio of the Gaussian in the two orthogonal directions.
I tuned all these parameters until I obtained filtered images
that seemed by eye to maximize the difference between the
foreground and other parts of the cell. I used a symmetric
Gaussian with sinusoids of different wavelengths, and a overall
Gaussian standard deviation of 17 pixels, chosen to roughly
match the structure of the textures. The Gabor filters did a
nice job of eliminating small dark regions in the background
that may have been confused with foreground.

I also used two Laplacian-of-Gaussian (LoG) filters with
different sized Gaussians. Both did a good job of distinguish-
ing flat regions from variable regions, as expected, but the
smaller LoG filter captured more detail in the variable regions
while the large filter caused the intensity of flat regions to be
brighter than the variable regions.



I then calculated local histograms from each filter. Based
on [5] I chose 11 bins for my histograms. Bins were created
by evenly partitioning the range of grayscale values in each
filtered image. In principle this might cause problems if there
are outlier pixels that are very bright or very dark which
would reduce the effective contrast in the image; histogram
equalization prior to binning might help this issue. I chose
the same window size (31x31 pixels) for computing local
histograms as for the LBP method above; the rationale is the
same.

Because the window for the logal histograms was fairly
large, I first calculated integral histograms for each filter bank,
then concatenated these to get the full feature vector (which
is 77-dimensional). To train the classifier, I again used SVM
with a linear kernel on all the pixel features derived from the
training image. I used 5-fold cross-validation to choose the
hyperparameter and tested the classifier on the same testing
image as for LBP.

III. RESULTS

Fig. 3 shows the segmentation results in red for the testing
image. Even though the testing image was very similar to the
training image, the algorithms varied widely in their ability to
detect the desired foreground. All of the methods were able
to distinguish the dark meshwork from the speckled texture
immediately surrounding it, without segmenting that area.

The thresholding method was the most successful at iden-
tifying as much of the ground truth foreground as possible
(indicated by the recall score of 73%, see Table I). However,
this came at the cost of also mislabeling a lot of structures,
particularly in the back of the cell, as foreground.

In contrast to the thresholding method, the LBP method
identified very few pixels as foreground. However, the pixels
chosen by the LBP algorithm were more likely than those of
the other methods to be correct (precision of 46%, Table I).

The performance of the LSH algorithm was intermediate
between these two others. It identified more foreground pixels
than the LBP algorithm, but not as many as the thresholding
algorithm. Furthermore, it still falsely identified as foreground
many of the darker pixels in the middle of the cell.

ROC curves are a useful way to measure the performance
of a classification algorithm. In a ROC curve, the true positive
rate and false positive rate are compared as a cutoff for classi-
fication (here the cutoff for the foreground score computed by
the SVM) is varied. On this plot, a perfect algorithm would
have a ROC curve that stays very close to the point where
the true positive rate is 100% and the false positive rate is
0, while an algorithm producing a ROC curve that follows
the y = x axis is considered no better than random chance.
Fig. 4 shows ROC curves for the LBP and LSH algorithms.
It can be seen that these algorithms do better than chance at
correctly identifying foreground pixels, but that they still have
a ways to go in order to be part of a fully automated EM
image segmentation pipeline.

Table 2 etc etc

Thresholding

Fig. 3. Results of applying segmentation optimized on a training image to the
test image shown; foreground pixels are segmented in red.LSH, Local Spectal
Histogram method; LBP, Local Binary Pattern method. The ground truth for
this image is also shown.

IV. DISCUSSION

The use of texture to segment EM images presented in this
report was a mixed success. While all the algorithms could
distinguish the meshwork from the speckled area around it,
they were not able to distinguish meshwork from functionally



Algorithm | Precision (%) | Recall (%)
Threshold 38 73
LBP 46 7
LSH 34 47
TABLE T

PRECISION-RECALL VALUES FOR THE DIFFERENT ALGORITHMS FOR

SEGMENTING THE TEST IMAGE. PRECISION IS T'P/(T P 4+ F P) AND

RECALL IS TP/(TP + FN), WHERE TP IS TRUE POSITIVES, F'P 1s
FALSE POSITIVES, AND F'N IS FALSE NEGATIVES.

ROC Curves for LBP and LSH Classification
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Fig. 4. ROC curves for the LBP and LSH algorithms. The black dashed line
shows the expectation of purely random segmentation.

distinct but texturally similar regions at the rear of the cell.
This may be a limitation of the information inherent in the
image itself; while we know from biological studies that the
meshwork is functionally distinct from other areas of the
cell, this may not be easily resolvable through this particular
imaging technique. However, it is also the case that there are
methods (clear in hindsight) that could be used to improve the
feature vectors and their classification, which will be described
below.

A. Future Directions

There are several ways I can improve these algorithms in the
future. The first and most obvious choice is to change the SVM
method I used. I was not aware of the many implementations
of SVM available for MATLAB that provide more options
for improving the results of classification. Two things that
would help would be to use non-linear kernels, such as the
radial basis function (rbf) kernel, which would provide more
flexibility in defining the manifold separating the foreground
and background features. Another parameter I could tune in
the SVM would be the tolerance to misclassification; given
the close proximity of foreground and background pixels in
feature space, I could raise the tolerance for misclassification
in order to get

Another option for improving the robustness of the learning
algorithm would be to incorporate information from more
training images. While each image has many “observations”
(pixels) to use for training, they are not independent; since
features are calculated from sliding windows, nearby pixels

will have very similar histograms. It is not clear a priori
how this might affect the classification. I could instead choose
foreground and background pixels at random from a larger
set of training images. This would reduce dependence in the
training set, and also expose the classifier to more variety
(different illumination/contrast/acquisition settings). It would
also allow me to have a more equal number of foreground
and background training examples

A third option for improvement would be to normalize
features in some way prior to training. Without normalization,
it’s possible that feature dimensions large in magnitude but
small in distinction are dominating the spread in the data,
leading to poor classification. The easiest way to normalize
is to subtract the mean of all observations and divide by the
standard deviation in each dimension.

Of course, even if I implement all these corrections, it is
still possible that there just isn’t enough separation of fore-
ground and background in feature space to perform adequate
classification. If this is the case, I will need to revise my
feature vectors. I have far more observations than dimensions,
so I could easily increase the dimensionality of the feature
space by adding additional filters to the filter bank for LSH,
for example. This might be required to improve separation.
I could also try a better method for optimizing features for
distinguishing foreground and background pixels. My current
method was to inspect the filtered images by eye and tune
the filter parameters to maximize visual distinction. Instead, I
could try directly measuring the difference in local histograms
for known foreground and background pixels using standard
metrics, e.g. the x? distance; I could then optimize parameters
to maximize the x? distance between the local histograms for
known foreground and background pixels.

Realistically, the difference between some of the dark
homogeneous textures in the images selected for testing and
training are fairly slight; it is possible that my interpretation
of the images is somewhat incorrect, and the distinction I
am making in texture does not have basis in the image. If
this is the case, I would have to bring in additional imaging
information to help distinguish structures with similar texture
in different parts of the cell. By correlating EM images
with fluorescent images labeling particular components, I can
identify functionally different regions that nevertheless have
similar texture in the EM image. This may also greatly aid
the automatic segmentation attempted here.

Once the segmentation algorithm is improved for the par-
ticular texture of interest to me, it will be interesting to see
how well the feature space defined for one texture can also
classify other textures. Hopefully the same space could be
used to identify many different textures in the same image to
efficiently access the rich information contained within EM
images.

V. APPENDIX A: NOTE ON CODE

Except where explicitly stated, all code written here is my
own (using MATLAB functions where appropriate). To make
things easier, full functions of other people’s code that I have



used (the LBP set of functions from Nikolay S on Matlab
Central) are in a separate folder (OtherPeoplesCode), included
for completeness.
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