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Abstract—This report describes a technique to automatically 

augment photographs by adding masks and hats (or ears) to 

people’s faces and to additionally complement the scene by 

adding Instagram-like effects such as vignetting, gradient 

blurring and color filtering. Unlike commercially available 

applications, this approach can be used to make any 

photographed or animated face into a mask. The augmentation 

of the target photograph is fully automatic and takes 1-3 seconds, 

depending on the size of the mage. As next steps, this algorithm 

could be implemented on a mobile device in real time for video-

chat applications. 
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I. INTRODUCTION AND MOTIVATION  

 Face and photograph augmentation are a form of expression, 

communication and entertainment. Applying a mask on one’s 

face is surprising and fun and may also be considered artistic.   

This project presents a technique to make any photographed or 

animated face into a mask and an automated algorithm to apply 

masks on top of faces. 

Augmenting photographs with masks is available 

commercially by companies such as Snapchat, Google and 

Baidu. However, they only provide a predefined selection of 

masks that one could use. This project presents a simple 

method to turn any image into a mask, thus providing the user 

additional freedom of expression. The creation of the mask 

from an image can also vary and provide an artistic aspect to 

this process. To complete the scene, one can also add 

additional Instagram-like filters to the resulting photograph, 

such as gradient blurring, vignetting and changing the color 

temperature. 

Nine masks were created for this project, which were available 

for a live demonstration. 

II. RELATED WORK 

Face morphing was demonstrated more than 20 years ago, 

most notably in Michael Jackson’s “Black Or White” music 

video (fig. 1a) [1]. Back then, morphing was assisted by a 

manual selection of feature points or lines in order to find 

correspondence between the merged images. More recently, 

companies such as Google and Baidu have created automated 

tools for automated photograph and video augmentation (fig. 

1b-d). These are mainly used for live chats by continuously 

applying a mask on one’s face. Automation was enabled in 

recent years owing to advanced machine learning algorithms 

which allow exact detection of dense facial landmarks. While 

these applications are quick and produce rather good results at 

placing the mask on the target face, they only provide a 

limited set of masks, which are usually animated, and do not 

merge naturally. This project shows a method to create a 

custom, natural-looking, augmented image. Other groups have 

worked on close projects, such as Face Substitution [2]. 

 

 
 

Figure 1 Related works. a) Images showing the morphing done in 

Michael Jackson’s music video. Right and left are the originals and 

center is their mixture. b) Google hangout mask c) Baidu FaceYou 

morphing application d) Google’s halloweenify (was available in 

2014). 

III. TECHNICAL APPROACH 

A. Outline 

The algorithm was implemented in Matlab with some of 

the functions running in C/C++ as mex files.  



An outline of the approach is as follows (steps with * are 

optional): 

1. For a chosen mask image (any photograph or animation): 

a. Create a blending map for the face. This gray level 

map describes the local weight of the mask in 

blending it with the target face. The blending map 

was created manually for this project, but could also 

be done automatically with segmentation. In order to 

achieve natural blending with the target the map can 

be smoothed with a Gaussian filter.  

b. * Create a blending map for a hat or ears. The 

process is similar to the previous step. 

c. Automatically or manually mark facial landmarks on 

the mask. This can be done automatically for people, 

using a landmark detector (see following steps) but 

has to be done manually in other cases. 

d. * Define parameters for changing the color 

temperature, vignetting and gradient blurring for the 

resulting image. 

2. For the image to be augmented: 

a. Automatically detect all of the faces in the image 

using Haar Cascades with OpenCV. 

3. For each face in the image: 

a. Detect the facial landmarks. In this project, 

landmarks were detected using Clandmark [3]–[5]. 

b. Based on the correspondence of landmarks between 

the mask and the target face, create a transformation 

that warps the mask to fit onto the target face. The 

transformation was calculated by using locally 

weighted means [1]. 

c. Warp the mask and the face-blending map according 

to the transformation. 

d. * Dynamically modify the face-blending map to 

include or exclude the regions of the eyes of the 

target face (in order to show or hide the eyes of the 

original face). This is done by adding or subtracting 

the convex hull of the eye-landmarks of the target 

face from the face-blending map. 

e. * Smooth the face-blending map, as defined by the 

mask parameters. 

f. Alpha-blend the warped mask and the target with the 

warped face-blending map used as the weight. 

g. * To automatically apply a hat or ears on the target 

face, scale, rotate and position the original mask 

(before warping) and the ear/hat-blending map 

according to the facial landmarks of the target face 

and the mask. Scale is determined by the width of the 

face. Position is determined by the landmark centered 

between the eyes. Rotation is determined by the 

angle of the landmarks of the nose.  

h. * Alpha-blend the mask and the target with the 

ear/hat-blending map used as the weight. 

4. * Complete the scene by adding Instagram-like effects, 

such as: 

a. * Gradient blurring 

b. * Vignetting 

c. * Changing the color temperature 

B. Facial landmark detection 

Facial landmark detection is a key step to this algorithm 

and is crucial to obtaining good results. In this project, 68 

landmarks were detected using Clandmark [3]–[5]. Clandmark 

is a multi-view facial landmark detector based on the 

Deformable Part Models (also called Pictorial Structures), 

which treats the problem of the simultaneous landmark 

detection and the viewing angle estimation within a structured 

output classification framework. A structured output SVM 

algorithm was used to simultaneously learn parameters of the 

shape model and the local detectors. 

Clandmark is an open-source project available on github 

[3]. For this project, I had to compile the project and run it 

with the appropriate landmark model. 

C. Calculating the mask transformation and warping 

The mask-to-face transformation was calculated based on 

the facial landmarks, treating the landmarks of the mask as 

moving points and the landmarks of the face as static points. 

The transformation was calculated by using locally weighted 

means and implemented with Matlab’s built-in function: 
fitgeotrans (movingPoints, fixedPoints,'lwm',n). 

The local weighted mean transformation creates a mapping by 

inferring a second degree polynomial at each control point 

using neighboring control points. n is a parameter that chooses 

the number of closest points that are used to infer the 

polynomial transformation for each control point pair. The 

mapping at any location depends on a weighted average of 

these polynomials. The weighted average is calculated 

according to the distance of the pixel to the control point. A 

similar approach was used in [1]. Warping is performed with 

Matlab’s function imwarp. 

 

Figure 2 Outline of face augmentation. a) The chosen image for a 

mask. b) The face-blending mask. c) The ear-blending mask. d) 68 

landmarks, in this case marked manually. e) The target image. f) Face 

and landmark automatic detection. g) The mask warped according to 

the landmarks. h) The face-blending map warped using a similar 

transformation and smoothed with a Gaussian filter. 

 



D. Gradient blur 

A gradient blur can be applied to emphasize the central region 

of the image. First, a normalized radius is calculated and the 

image is divided to eight blur levels. Next, the image is 

blurred eight times and then the blurred images are combined 

according to the local blur level. The standard deviation of the 

Gaussian blur kernel effectively increases with each blur level, 

as the distance from the center increases.  

E. Vingetting 

Vignetting, also known as “light fall-off” is common in optics 

and photography, which in simple terms means darkening of 

image corners when compared to the center. Vignetting is 

either caused by optics, or is purposefully added in post-

processing in order to draw the viewer’s eye away from the 

distractions in the corner, towards the center of the image. For 

this project, a vignetting effect was added by decreasing the 

pixel intensities by cos4(θ), similarly to natural lens vignetting. 

The angle, θ, is calculated as a linear function of the radius in 

the image: θ = r/d, in which d is a parameter.  

F. Changing the color temperature 

The color temperature of a light source is the temperature of 

an ideal black-body radiator that radiates light of comparable 

hue to that of the light source. In In this project remapping of 

color values was done to simulate variations in ambient color 

temperature, for instance, to create more warmth or a spooky, 

cold atmosphere to the resulting image. 

 

 
 

Figure 3 Temperature to RGB value from 1500 K to 5000 K [6]. 

High temperatures seem blue and low temperatures are orange-red. 

 

Calculation of the color at given temperature was done based 

on [6]. The calculated color was averaged with the hue of the 

original image with a predefined weight (by alpha-blending), 

while maintaining the same image intensity. The resulting 

image seems warmer or cooler, as desired from the predefined 

temperature. 

 

 
 

Figure 4 Result of the algorithm. a) The original image. b) The 

target image with mask and ears. c) The resulting image with 

vignetting and gradient blur (color temperature is unchanged). 

 

IV. EXPERIMENTAL RESULTS 

Nine themes were created for this projects. A description 

of the masks and the additional effects are listed below. Figure 

5 shows examples of these masks, more examples can be 

found in the supplementary examples folder. The full process 

of applying the theme on a target image takes 1-3 seconds (on 

a laptop computer), depending on the size of the target image. 

The processing time increases with the number of faces in the 

image. 

 

The masks are: 

1. Santa-Claus: the face-blending map includes Santa’s 

facial hair (eye brows and beard). An additional blending 

map was created for the hat. Landmarks were marked 

manually because the occlusion of the beard prevented 

the automated algorithm from detecting the landmarks. 

Blurring was applied to the blending maps for a gradual 

blend with the target image. Vignetting, blurring and a 

color temperature change to 3000K were added but are 

not shown (because without them the result looks more 

impressive). 

2. Makeup: the face-blending map includes the eyes and lips 

of a woman wearing makeup. Blurring was applied to the 

blending maps for a gradual blend with the target image.  

Landmarks were detected automatically.  

3. Obama: the face-blending map includes Barak Obama’s 

face with a weight of 50%. In order to avoid seeing the 

eyes of the original face, dynamic masking was applied so 

that in the location of the original eyes the weight of the 

mask is 100%. Blurring was applied to the blending maps 

for a gradual blend with the target image.  Landmarks 

were detected automatically. 

4. Clown: the face-blending map includes the face of the 

clown. An additional blending map was created for the 

red hair. In order to see the eyes of the original face, 

dynamic masking was applied so that in the location of 

the original eyes the weight of the original image is 

100%. Blurring was applied to the blending maps for a 

gradual blend with the target image. Landmarks were 

detected automatically and manually corrected for the 

eyebrows which were wrongfully detected due to white 

makeup.  

5. Skull: the face-blending map includes the face of the 

skull. In order to see the eyes of the original face, 

dynamic masking was applied so that in the location of 

the original eyes the weight of the original image is 

100%. Blurring was applied to the blending maps for a 

gradual blend with the target image. Landmarks were 

marked manually. To make the result seem spooky, the 

saturation of the image was decreased to a half of the 

original value and vignetting and blurring were added. 

6. Anonymous: the face-blending map includes the face of 

the mask. In order to see the eyes of the original face, 

dynamic masking was applied so that in the location of 

the original eyes the weight of the original image is 

100%. Only slight blurring was applied to the blending 

maps. Surprisingly, the landmark detection algorithm was 

able to detect facial landmarks automatically. Vignetting 



and blurring were added to the image (but not shown in 

figure 5). 

7. Cyborg: the face-blending map includes parts of the face 

of the terminator robot. Slight blurring was applied to the 

blending maps. Landmarks were marked manually. To 

make the result seem cool and metallic, the color 

temperature is set to 10,000K and vignetting and blurring 

were added. 

8. Night’s king: the face-blending map includes the full face 

of the night’s king (from Game of thrones) with a weight 

of 100%. Facial landmarks were detected automatically. 

To make the resulting image appear as if it was captured 

in a cold foggy place, the color temperature is set to 

10,000K and vignetting and blurring were added. In 

addition to that, the color balancing was transferred from 

the original image, meaning that the average of each 

channel (r, g and b) is equal to that of the original image. 

9. Cat: the face-blending map includes the eyes, nose and 

mouth of a cat. An additional blending map was created 

for the ears. Blurring was applied to the blending maps 

for a gradual blend with the target image.  Landmarks 

were detected manually. Vignetting and gradient blurring 

were added. 

 

 
 

Figure 5 Examples of the nine masks.  

 

V. EVALUATION OF SYSTEM PARAMETERS 

One of the parameters of the algorithm is the number of 

closest points that are used to infer the polynomial 

transformation for each control point pair (the parameter n in 

fitgeotrans). A small value of n results in an unstable and 

incorrect transformation. Using all of the available points (68) 

results in a correct result. Processing time increase is 

negligible. 

 
 

Figure 6 The effect of the number of points used for calculating 

the morphing transformation. a) n=20 b) n=30 c) n=40 d) n=68 

(the image is after applying the mask and before adding additional 

effects). 

 

Additional parameters include the size of the blur kernel, the 

chosen color temperature, the speed of signal decrease in the 

vignetting and other parameters which directly influence the 

appearance of the image. The effect of these parameters is 

intuitive therefore their evaluation is out of scope for this 

report. 

VI. COMPARISON TO ALTERNATIVE APPROACHES 

The two key components to the success of this algorithm 

are facial landmark detection and warping. 

Warping needs to be continuous and natural. Using the 

local weighted means approach for the calculation of the 

transformation is a fairly robust and smooth method. An 

alternative method to calculate a per-pixel transformation 

would be a piecewise-linear approach. This transformation 

maps control points by breaking up the plane into local 

piecewise-linear regions in which a different affine 

transformation maps control points in each local region. This 

approach yields transformations which are not continuous or 

smooth and even broken (have holes). Therefore, the local 

weighted means approach was chosen for this project. 

Detection of facial landmarks has been a hot topic in the 

fields of computer vision and machine learning in the recent 

years. Facial landmarks can be used for example to identify 

people or estimate a person’s mood, age, gender, etc. The first 

requirement of a landmark detector for this project is that it 

would detect dense landmarks, and not merely the edges of 

facial features. Second, since the project is implemented in 

Matlab, it is preferred that the detector have a Matlab 



interface. I found three available online tools that meet these 

requirements: 

1. Clandmark [3]–[5], that was described earlier and that 

was used for most of this project. 

2. Face ++ [7]–[10], a commercial vision platform. Face++ 

provides a Matlab interface to upload images to the 

company’s servers and returns the location of the face and 

facial landmarks. Their landmarks are very robust and 

more resistant to occlusions. However, I did not like the 

idea of uploading photos to unfamiliar servers therefore, I 

did not choose to use their product. A comparison 

between face++ and Clandmark is presented in figure 7. 

3. Cambridge face tracker [11] had the potential to be useful 

for this project, however, I did not manage to compile it. 

 

Other mentionable landmark detectors that were not tested 

because they did not have a Matlab interface are FaceTracker 

[12] and Active shape models [13]. 

 

 
Figure 7 Comparison between Clandmark and face++. a, c) the 

68 landmarks detected by Clandmark b, d) the 83 landmarks detected 

by face++. In c we observe that the landmarks are not detected 

correctly by Clandmark due to hair occluding the right eyebrow. In d 

we observe that face ++ is able to detect the landmarks correctly. 

VII. DISCUSSION, LIMITATIONS  

Face and photograph augmentation were successfully 

demonstrated on a variety of images and masks. Owing to the 

exact identification of the landmarks, masks are nearly always 

placed perfectly at the right location and blend naturally with 

the target. The algorithm runs on Matlab and takes 1-3 

seconds to complete.  

Several limitations have been identified: 

1. When the head is rotated at a large angle, OpenCV is not 

able to detect the face correctly, and therefore, facial 

landmarks are not detected or are incorrect. This may be 

resolved by using a more advanced face detector. 

2. When the facial landmarks are detected incorrectly on the 

target image the algorithm yields suboptimal results. This 

happens when the main features of the face are obscured. 

This may be resolved by better training or a modified 

model. 

3. Ear or hat placement supports rotation of the head but not 

yaw (rotation in phi). This is because the transformation 

of the ears/hat is rigid and only has rotation and scaling, 

not perspective. 

 
 

Figure 8 The effect of yaw rotation on ear placement. a) 

Original b) Augmented image, one ear is in place but the other 

is floating above the head.  

 

4. There are no landmarks on the forehead and at the top of 

the head. This makes masks unstable above the eyebrows. 

Training the landmark detector to detect the forehead may 

resolve this, but perhaps a deferent model may be needed. 

From the examples in figure 1d, it seems that Google has 

managed to solve this issue. 

VIII. FUTURE WORK 

AS next steps: 

1. This technique could be implemented on a mobile device 

and used as a fun application for augmenting 

photographs. 

2. Increasing the speed of the processing would allow real-

time augmentation for video and chat. Landmark tracking 

instead of continuous detection would assist in reaching 

this goal. 

3. While facial landmark detection is usually very exact, 

additional improvement should be done to make it more 

robust and detect landmarks on rotated and partially 

obscured faces, such as by a beard, glasses or bangs. 

4. Find or design a facial landmark detector that is able to 

identify landmarks at the edge of the forehead (hairline) 

and the contour of the top of the head. These landmarks 

would enable “stretching” a mask fully on the entire face 

and allow for a more precise placement of ears or a hat.  
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