
Face and Photograph Augmentation Based on a

Custom Theme
EE368 Project, Autmn 2015

Orly Liba

Electrical Engineering PhD candidate

Stanford University

orlyliba@stanford.edu

Abstract—This report describes a technique to automatically

augment photographs by adding masks and hats (or ears) to

people’s faces and to additionally complement the scene by

adding Instagram-like effects such as vignetting, gradient

blurring and color filtering. Unlike commercially available

applications, this approach can be used to make any

photographed or animated face into a mask. The augmentation

of the target photograph is fully automatic and takes 1-3 seconds,

depending on the size of the mage. As next steps, this algorithm

could be implemented on a mobile device in real time for video-

chat applications.

Keywords—Morphing; Photograph Augmentation;

I. INTRODUCTION AND MOTIVATION

 Face and photograph augmentation are a form of expression,

communication and entertainment. Applying a mask on one’s

face is surprising and fun and may also be considered artistic.

This project presents a technique to make any photographed or

animated face into a mask and an automated algorithm to apply

masks on top of faces.

Augmenting photographs with masks is available

commercially by companies such as Snapchat, Google and

Baidu. However, they only provide a predefined selection of

masks that one could use. This project presents a simple

method to turn any image into a mask, thus providing the user

additional freedom of expression. The creation of the mask

from an image can also vary and provide an artistic aspect to

this process. To complete the scene, one can also add

additional Instagram-like filters to the resulting photograph,

such as gradient blurring, vignetting and changing the color

temperature.

Nine masks were created for this project, which were available

for a live demonstration.

II. RELATED WORK

Face morphing was demonstrated more than 20 years ago,

most notably in Michael Jackson’s “Black Or White” music

video (fig. 1a) [1]. Back then, morphing was assisted by a

manual selection of feature points or lines in order to find

correspondence between the merged images. More recently,

companies such as Google and Baidu have created automated

tools for automated photograph and video augmentation (fig.

1b-d). These are mainly used for live chats by continuously

applying a mask on one’s face. Automation was enabled in

recent years owing to advanced machine learning algorithms

which allow exact detection of dense facial landmarks. While

these applications are quick and produce rather good results at

placing the mask on the target face, they only provide a

limited set of masks, which are usually animated, and do not

merge naturally. This project shows a method to create a

custom, natural-looking, augmented image. Other groups have

worked on close projects, such as Face Substitution [2].

Figure 1 Related works. a) Images showing the morphing done in

Michael Jackson’s music video. Right and left are the originals and

center is their mixture. b) Google hangout mask c) Baidu FaceYou

morphing application d) Google’s halloweenify (was available in

2014).

III. TECHNICAL APPROACH

A. Outline

The algorithm was implemented in Matlab with some of

the functions running in C/C++ as mex files.

An outline of the approach is as follows (steps with * are

optional):

1. For a chosen mask image (any photograph or animation):

a. Create a blending map for the face. This gray level

map describes the local weight of the mask in

blending it with the target face. The blending map

was created manually for this project, but could also

be done automatically with segmentation. In order to

achieve natural blending with the target the map can

be smoothed with a Gaussian filter.

b. * Create a blending map for a hat or ears. The

process is similar to the previous step.

c. Automatically or manually mark facial landmarks on

the mask. This can be done automatically for people,

using a landmark detector (see following steps) but

has to be done manually in other cases.

d. * Define parameters for changing the color

temperature, vignetting and gradient blurring for the

resulting image.

2. For the image to be augmented:

a. Automatically detect all of the faces in the image

using Haar Cascades with OpenCV.

3. For each face in the image:

a. Detect the facial landmarks. In this project,

landmarks were detected using Clandmark [3]–[5].

b. Based on the correspondence of landmarks between

the mask and the target face, create a transformation

that warps the mask to fit onto the target face. The

transformation was calculated by using locally

weighted means [1].

c. Warp the mask and the face-blending map according

to the transformation.

d. * Dynamically modify the face-blending map to

include or exclude the regions of the eyes of the

target face (in order to show or hide the eyes of the

original face). This is done by adding or subtracting

the convex hull of the eye-landmarks of the target

face from the face-blending map.

e. * Smooth the face-blending map, as defined by the

mask parameters.

f. Alpha-blend the warped mask and the target with the

warped face-blending map used as the weight.

g. * To automatically apply a hat or ears on the target

face, scale, rotate and position the original mask

(before warping) and the ear/hat-blending map

according to the facial landmarks of the target face

and the mask. Scale is determined by the width of the

face. Position is determined by the landmark centered

between the eyes. Rotation is determined by the

angle of the landmarks of the nose.

h. * Alpha-blend the mask and the target with the

ear/hat-blending map used as the weight.

4. * Complete the scene by adding Instagram-like effects,

such as:

a. * Gradient blurring

b. * Vignetting

c. * Changing the color temperature

B. Facial landmark detection

Facial landmark detection is a key step to this algorithm

and is crucial to obtaining good results. In this project, 68

landmarks were detected using Clandmark [3]–[5]. Clandmark

is a multi-view facial landmark detector based on the

Deformable Part Models (also called Pictorial Structures),

which treats the problem of the simultaneous landmark

detection and the viewing angle estimation within a structured

output classification framework. A structured output SVM

algorithm was used to simultaneously learn parameters of the

shape model and the local detectors.

Clandmark is an open-source project available on github

[3]. For this project, I had to compile the project and run it

with the appropriate landmark model.

C. Calculating the mask transformation and warping

The mask-to-face transformation was calculated based on

the facial landmarks, treating the landmarks of the mask as

moving points and the landmarks of the face as static points.

The transformation was calculated by using locally weighted

means and implemented with Matlab’s built-in function:
fitgeotrans (movingPoints, fixedPoints,'lwm',n).

The local weighted mean transformation creates a mapping by

inferring a second degree polynomial at each control point

using neighboring control points. n is a parameter that chooses

the number of closest points that are used to infer the

polynomial transformation for each control point pair. The

mapping at any location depends on a weighted average of

these polynomials. The weighted average is calculated

according to the distance of the pixel to the control point. A

similar approach was used in [1]. Warping is performed with

Matlab’s function imwarp.

Figure 2 Outline of face augmentation. a) The chosen image for a

mask. b) The face-blending mask. c) The ear-blending mask. d) 68

landmarks, in this case marked manually. e) The target image. f) Face

and landmark automatic detection. g) The mask warped according to

the landmarks. h) The face-blending map warped using a similar

transformation and smoothed with a Gaussian filter.

D. Gradient blur

A gradient blur can be applied to emphasize the central region

of the image. First, a normalized radius is calculated and the

image is divided to eight blur levels. Next, the image is

blurred eight times and then the blurred images are combined

according to the local blur level. The standard deviation of the

Gaussian blur kernel effectively increases with each blur level,

as the distance from the center increases.

E. Vingetting

Vignetting, also known as “light fall-off” is common in optics

and photography, which in simple terms means darkening of

image corners when compared to the center. Vignetting is

either caused by optics, or is purposefully added in post-

processing in order to draw the viewer’s eye away from the

distractions in the corner, towards the center of the image. For

this project, a vignetting effect was added by decreasing the

pixel intensities by cos4(θ), similarly to natural lens vignetting.

The angle, θ, is calculated as a linear function of the radius in

the image: θ = r/d, in which d is a parameter.

F. Changing the color temperature

The color temperature of a light source is the temperature of

an ideal black-body radiator that radiates light of comparable

hue to that of the light source. In In this project remapping of

color values was done to simulate variations in ambient color

temperature, for instance, to create more warmth or a spooky,

cold atmosphere to the resulting image.

Figure 3 Temperature to RGB value from 1500 K to 5000 K [6].

High temperatures seem blue and low temperatures are orange-red.

Calculation of the color at given temperature was done based

on [6]. The calculated color was averaged with the hue of the

original image with a predefined weight (by alpha-blending),

while maintaining the same image intensity. The resulting

image seems warmer or cooler, as desired from the predefined

temperature.

Figure 4 Result of the algorithm. a) The original image. b) The

target image with mask and ears. c) The resulting image with

vignetting and gradient blur (color temperature is unchanged).

IV. EXPERIMENTAL RESULTS

Nine themes were created for this projects. A description

of the masks and the additional effects are listed below. Figure

5 shows examples of these masks, more examples can be

found in the supplementary examples folder. The full process

of applying the theme on a target image takes 1-3 seconds (on

a laptop computer), depending on the size of the target image.

The processing time increases with the number of faces in the

image.

The masks are:

1. Santa-Claus: the face-blending map includes Santa’s

facial hair (eye brows and beard). An additional blending

map was created for the hat. Landmarks were marked

manually because the occlusion of the beard prevented

the automated algorithm from detecting the landmarks.

Blurring was applied to the blending maps for a gradual

blend with the target image. Vignetting, blurring and a

color temperature change to 3000K were added but are

not shown (because without them the result looks more

impressive).

2. Makeup: the face-blending map includes the eyes and lips

of a woman wearing makeup. Blurring was applied to the

blending maps for a gradual blend with the target image.

Landmarks were detected automatically.

3. Obama: the face-blending map includes Barak Obama’s

face with a weight of 50%. In order to avoid seeing the

eyes of the original face, dynamic masking was applied so

that in the location of the original eyes the weight of the

mask is 100%. Blurring was applied to the blending maps

for a gradual blend with the target image. Landmarks

were detected automatically.

4. Clown: the face-blending map includes the face of the

clown. An additional blending map was created for the

red hair. In order to see the eyes of the original face,

dynamic masking was applied so that in the location of

the original eyes the weight of the original image is

100%. Blurring was applied to the blending maps for a

gradual blend with the target image. Landmarks were

detected automatically and manually corrected for the

eyebrows which were wrongfully detected due to white

makeup.

5. Skull: the face-blending map includes the face of the

skull. In order to see the eyes of the original face,

dynamic masking was applied so that in the location of

the original eyes the weight of the original image is

100%. Blurring was applied to the blending maps for a

gradual blend with the target image. Landmarks were

marked manually. To make the result seem spooky, the

saturation of the image was decreased to a half of the

original value and vignetting and blurring were added.

6. Anonymous: the face-blending map includes the face of

the mask. In order to see the eyes of the original face,

dynamic masking was applied so that in the location of

the original eyes the weight of the original image is

100%. Only slight blurring was applied to the blending

maps. Surprisingly, the landmark detection algorithm was

able to detect facial landmarks automatically. Vignetting

and blurring were added to the image (but not shown in

figure 5).

7. Cyborg: the face-blending map includes parts of the face

of the terminator robot. Slight blurring was applied to the

blending maps. Landmarks were marked manually. To

make the result seem cool and metallic, the color

temperature is set to 10,000K and vignetting and blurring

were added.

8. Night’s king: the face-blending map includes the full face

of the night’s king (from Game of thrones) with a weight

of 100%. Facial landmarks were detected automatically.

To make the resulting image appear as if it was captured

in a cold foggy place, the color temperature is set to

10,000K and vignetting and blurring were added. In

addition to that, the color balancing was transferred from

the original image, meaning that the average of each

channel (r, g and b) is equal to that of the original image.

9. Cat: the face-blending map includes the eyes, nose and

mouth of a cat. An additional blending map was created

for the ears. Blurring was applied to the blending maps

for a gradual blend with the target image. Landmarks

were detected manually. Vignetting and gradient blurring

were added.

Figure 5 Examples of the nine masks.

V. EVALUATION OF SYSTEM PARAMETERS

One of the parameters of the algorithm is the number of

closest points that are used to infer the polynomial

transformation for each control point pair (the parameter n in

fitgeotrans). A small value of n results in an unstable and

incorrect transformation. Using all of the available points (68)

results in a correct result. Processing time increase is

negligible.

Figure 6 The effect of the number of points used for calculating

the morphing transformation. a) n=20 b) n=30 c) n=40 d) n=68

(the image is after applying the mask and before adding additional

effects).

Additional parameters include the size of the blur kernel, the

chosen color temperature, the speed of signal decrease in the

vignetting and other parameters which directly influence the

appearance of the image. The effect of these parameters is

intuitive therefore their evaluation is out of scope for this

report.

VI. COMPARISON TO ALTERNATIVE APPROACHES

The two key components to the success of this algorithm

are facial landmark detection and warping.

Warping needs to be continuous and natural. Using the

local weighted means approach for the calculation of the

transformation is a fairly robust and smooth method. An

alternative method to calculate a per-pixel transformation

would be a piecewise-linear approach. This transformation

maps control points by breaking up the plane into local

piecewise-linear regions in which a different affine

transformation maps control points in each local region. This

approach yields transformations which are not continuous or

smooth and even broken (have holes). Therefore, the local

weighted means approach was chosen for this project.

Detection of facial landmarks has been a hot topic in the

fields of computer vision and machine learning in the recent

years. Facial landmarks can be used for example to identify

people or estimate a person’s mood, age, gender, etc. The first

requirement of a landmark detector for this project is that it

would detect dense landmarks, and not merely the edges of

facial features. Second, since the project is implemented in

Matlab, it is preferred that the detector have a Matlab

interface. I found three available online tools that meet these

requirements:

1. Clandmark [3]–[5], that was described earlier and that

was used for most of this project.

2. Face ++ [7]–[10], a commercial vision platform. Face++

provides a Matlab interface to upload images to the

company’s servers and returns the location of the face and

facial landmarks. Their landmarks are very robust and

more resistant to occlusions. However, I did not like the

idea of uploading photos to unfamiliar servers therefore, I

did not choose to use their product. A comparison

between face++ and Clandmark is presented in figure 7.

3. Cambridge face tracker [11] had the potential to be useful

for this project, however, I did not manage to compile it.

Other mentionable landmark detectors that were not tested

because they did not have a Matlab interface are FaceTracker

[12] and Active shape models [13].

Figure 7 Comparison between Clandmark and face++. a, c) the

68 landmarks detected by Clandmark b, d) the 83 landmarks detected

by face++. In c we observe that the landmarks are not detected

correctly by Clandmark due to hair occluding the right eyebrow. In d

we observe that face ++ is able to detect the landmarks correctly.

VII. DISCUSSION, LIMITATIONS

Face and photograph augmentation were successfully

demonstrated on a variety of images and masks. Owing to the

exact identification of the landmarks, masks are nearly always

placed perfectly at the right location and blend naturally with

the target. The algorithm runs on Matlab and takes 1-3

seconds to complete.

Several limitations have been identified:

1. When the head is rotated at a large angle, OpenCV is not

able to detect the face correctly, and therefore, facial

landmarks are not detected or are incorrect. This may be

resolved by using a more advanced face detector.

2. When the facial landmarks are detected incorrectly on the

target image the algorithm yields suboptimal results. This

happens when the main features of the face are obscured.

This may be resolved by better training or a modified

model.

3. Ear or hat placement supports rotation of the head but not

yaw (rotation in phi). This is because the transformation

of the ears/hat is rigid and only has rotation and scaling,

not perspective.

Figure 8 The effect of yaw rotation on ear placement. a)

Original b) Augmented image, one ear is in place but the other

is floating above the head.

4. There are no landmarks on the forehead and at the top of

the head. This makes masks unstable above the eyebrows.

Training the landmark detector to detect the forehead may

resolve this, but perhaps a deferent model may be needed.

From the examples in figure 1d, it seems that Google has

managed to solve this issue.

VIII. FUTURE WORK

AS next steps:

1. This technique could be implemented on a mobile device

and used as a fun application for augmenting

photographs.

2. Increasing the speed of the processing would allow real-

time augmentation for video and chat. Landmark tracking

instead of continuous detection would assist in reaching

this goal.

3. While facial landmark detection is usually very exact,

additional improvement should be done to make it more

robust and detect landmarks on rotated and partially

obscured faces, such as by a beard, glasses or bangs.

4. Find or design a facial landmark detector that is able to

identify landmarks at the edge of the forehead (hairline)

and the contour of the top of the head. These landmarks

would enable “stretching” a mask fully on the entire face

and allow for a more precise placement of ears or a hat.

ACKNOWLEDGMENT

I would like to acknowledge Michal Uřičář for making
Clandmark an open source project. In addition, I would like to
thank Professor Gordon Wetzstein and the EE368 course staff.

REFERENCES

[1] T. Beier and S. Neely, “Feature-based image metamorphosis,” ACM

SIGGRAPH Comput. Graph., vol. 26, no. 2, pp. 35–42, Jul. 1992.

[2] A. Castro and K. McDonald, “FaceSubstitution,” 2011. [Online].

Available: https://github.com/arturoc/FaceSubstitution.

[3] M. Uřičář, “clandmark,” 2015. [Online]. Available:

https://github.com/uricamic/clandmark.

[4] M. Uřičář, V. Franc, D. Thomas, A. Sugimoto, and V. Hlaváč,

“Real-time Multi-view Facial Landmark Detector Learned by the

Structured Output SVM,” in BWILD’15: Biometrics in the Wild,

2015.

[5] M. Uřičář, V. Franc, and V. Hlaváč, “Facial Landmark Tracking by

Tree-based Deformable Part Model Based Detector,” in

Proceedings of IEEE International Conference on Computer Vision,

300 Videos in the Wild (300-VW): Facial Landmark Tracking in-

the-Wild Challenge & Workshop (ICCVW’15). Santiago, Chile,

2015.

[6] T. Helland, “Temperature to RGB.” [Online]. Available:

http://www.tannerhelland.com/4435/convert-temperature-rgb-

algorithm-code/.

[7] Megvii Inc., “face++ Research Toolkit,” 2013. [Online]. Available:

www.faceplusplus.com.

[8] H. Fan, M. Yang, Z. Cao, Y. Jiang, and Q. Yin, “Learning Compact

Face Representation,” in Proceedings of the ACM International

Conference on Multimedia - MM ’14, 2014, pp. 933–936.

[9] H. Fan, Z. Cao, Y. Jiang, Q. Yin, and C. Doudou, “Learning Deep

Face Representation,” Mar. 2014.

[10] E. Zhou, H. Fan, Z. Cao, Y. Jiang, and Q. Yin, “Extensive Facial

Landmark Localization with Coarse-to-Fine Convolutional Network

Cascade,” in 2013 IEEE International Conference on Computer

Vision Workshops, 2013, pp. 386–391.

[11] T. Baltrusaitis, “Cambridge Face Tracker,” 2014. [Online].

Available: https://github.com/TadasBaltrusaitis/CLM-framework.

[12] J. Saragih and K. McDonald, “FaceTracker.” [Online]. Available:

http://facetracker.net/.

[13] S. Milborrow and F. Nicolls, “Active Shape Models with SIFT

Descriptors and MARS,” in International Conference on Computer

Vision Theory and Applications, 2014, pp. 380–387.

