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Abstract—Automatically segmenting bone tissue in MRI scans
requires robustness against poor signal-to-noise ratios, highly
inconsistent lighting conditions, and variability within bone
tissues. Because of these difficulties, very little literature exists
on automatic MRI bone segmentation. Current state-of-the-art
methods are either semi-automatic or rely on databases of prior
manual segmentations. Here, we propose a method that segments
the radius and ulna bones using multiple passes of the Maximally
Stable Extremal Regions (MSER) [1]] algorithm on 2D slices of the
volumetric MRI scans. On two MRI scans, our method achieved
a Dice similarity coefficient (DSC) of 0.98, beating present state-
of-the-art techniques.

I. INTRODUCTION AND MOTIVATION

Magnetic Resonance Imaging (MRI) provides a safe and
non-invasive way to study internal tissues and create detailed
musculoskeletal models of the body. Aside from clinical
applications, these models can be used in areas ranging
from character animation to assistive robotics, where accurate
models of human motion are important. However, obtaining
these musculoskeletal models requires manually segmenting
bones and muscles, a prohibitively time-consuming process;
segmenting one knee alone takes an expert hours [2]. Au-
tomatic segmentation could allow the mass generation of
musculoskeletal models.

Fully automatic segmentation is difficult for three primary
reasons. First, the low signal-to-noise ratio of MRI scans
makes identifying different tissues difficult, even for human
labelers [2]. Second, highly inconsistent lighting in the MRI
scanning workspace causes white trabecular bone tissue in one
region to be darker than the background in other regions, mak-
ing global image processing difficult. Finally, different bone
tissues tend to vary more in appearance with each other than
with the surrounding muscle tissue, meaning segmentation
methods must be robust to inconsistencies.

In this paper, we outline a pipeline for automatically
segmenting the radius and ulna. However, this method is
immediately generalizable to any bone with a relatively thick
cortical layer, such as the humerus.

II. RELATED WORK

Current methods for automatic segmentation rely on statisti-
cal techniques to generate new segmentations by warping prior
datasets. However, these methods require the existence of prior
manual segmentations, which are only available from clinics
for frequently segmented regions such as hip and knee joints.
Seim et al., for example, uses 60 MRI knee segmentations
to create a statistical shape model of the knee, which is
then transformed based on voxel intensities [2f]. Xia et al.
performs Principal Component Analysis (PCA) on the shape

variations of 28 hip bone segmentations and transforms the
features using gradient information of the image [J3|]. Schmid
et al. similarly uses 29 hip bone segmentations to perform
PCA, but warps the features using Markov Random Field
forces [4]. By their statistical nature, these methods cannot be
easily used to segment infrequently segmented bones. Thus, a
method for automatic segmentation that does not require prior
segmentations is desired.

Other methods start from very rough manual segmentations
and use boundary-seeking algorithms to refine the segmenta-
tions 3], [6]]. Although these methods lift a significant amount
of labor from precise manual segmentation, they still do not
make the mass generation of musculoskeletal models possible.

III. METHODOLOGY

A. Background Removal

Because the backgrounds of MRI scans are so noisy and
contain significant lighting artifacts, it is important to filter
out the background before proceeding with other image pro-
cessing techniques. Otherwise, the background compromises
the effectiveness of these methods.

The skin boundary is relatively distinct, so we can outline
the foreground with a a simple edge detector. However, due
to inconsistent lighting, the magnitudes of the image gradients
at this boundary vary significantly. Thus, we choose to use
a Laplacian of Gaussian edge detector because it responds
equally to strong and weak edges. Furthermore, it is robust
against blurry images, which is a necessary feature as most
MRI scans have low resolutions, and miniscule movement of
the subject during the scanning process adds additional blur.
The Laplacian of Gaussian edge detector also conveniently
produces complete loops that we can fill in with simple hole
filling methods to create a foreground mask.

The foreground mask can afford to be approximate, since
bones do not typically lie close to the skin’s surface. Thus,
for speed, we simply slice the 3D volume along one axis
and process each slice as 2D images. On each slice, we first
perform a median filter to reduce the grainy noise. Then, we
apply the Laplacian of Gaussian edge detector, which typically

produces the result in



Fig. 1. Using Laplacian of Gaussian to detect the skin boundary. This image
is a cross section of the forearm taken perpendicular to the arm’s axis.

Clearing all edge loops connected to the border typically
removes the edges in the background. Then, performing a
morphological close operation with a disk followed by hole
filling consolidates the edges within the foreground into a
solid mask. To remove extraneous foreground slices that stick
out from neighboring slices, we can perform morphological
opening with a square along one of the other two axes. Finally,
to fill in gaps between slices and to simultaneously smooth out
the final mask, we perform a morphological open with a circle.

This produces the mask in

Fig. 2. Foreground mask extracted from Laplacian of Gaussian edge detection.

B. Adaptive Histogram Equalization

By masking out the noisy background of the MRI image, we
can then use adaptive histogram equalization to compensate
for unequal lighting in the image. For a 3D image, we
simply extend standard adaptive histogram equalization with
3D window boxes instead of squares. shows the result
of equalization. Running histogram equalization with small
step sizes is computationally expensive, so we aim to use as
large window/step sizes as possible.

Fig. 3. 3D adaptive histogram equalization to mitigate unequal lighting.

C. Trabecular Tissue Detection with MSER

The trabecular tissue of bones shows up as white in the
MRI scan and is surrounded by a black cortical tissue layer,
which also belongs to the bone. Because the trabecular tissue
is isolated from the surrounding muscle tissue, detecting this
tissue first provides a reliable method to identify separate
bones.

We use bright-on-dark Maximally Stable Extremal Regions
(MSER) [1]] to mark the trabecular regions on slices of the
MRI volume along a particular axis. In situations where the
trabecular tissue’s surface is tangential to the 2D image slice,
MSER has trouble identifying trabecular tissue. To resolve this
issue, we perform a second pass of MSER on slices along a

different axis. The result is shown in

Fig. 4. Bright-on-dark MSER reveals trabecular tissue.

Finally, we identify the 3D connected components of the
volume with a 6-neighborhood. In the case of the radius
and ulna, the longest connected components with the greatest

eccentricity are the relevant segmentations (Figure 5).



Fig. 5. The longest and most eccentric connected components correspond to
the trabecular tissues of the radius and ulna.

D. Cortical Tissue Detection with MSER

To detect the dark cortical regions of the bone, we apply
dark-on-bright MSER on slices of the MRI volume along only
one axis. For each slice, we identify the cortical regions by
the dark segmentations that are connected to the trabecular
segmentations with a 4-neighborhood.

After filling in the holes and applying a 3D morphological
close with a sphere for some post-processing smoothing, we
obtain the final segmentation of the radius and ulna (Figure 6).

Fig. 6. Dark-on-bright MSER adds cortical tissues to the segmentation.

IV. EVALUATION

To score the accuracy of the automatic segmentations, we
calculated the ratio of foreground voxels that matched the
corresponding voxels in the manually segmented reference
image. This is equivalent to the Dice similarity coefficient
(DSC) [7]. In the false positive score represents
the percentage of voxels that were incorrectly labeled as
bone tissue, and false negative score represents the percentage
of voxels that were incorrectly labeled as non-bone tissue.
Because of the difficulty of manually segmenting bones, we
only evaluated two automatic segmentations.

Both scans scored DSCs of around 0.98, achieving a state-
of-the-art record. Most of the error comes from false negatives;

TABLE I
PERFORMANCE OF PROPOSED SEGMENTATION METHOD.

Scan ID | False Positives | False Negatives DSC
1 0.02% 2.20% 0.9878
2 0.60% 1.10% 0.9830

in other words, the automatic segmentation is more conserva-
tive with bone segmentation. For comparison, Seim et al. and
Xia et al. achieved DSCs of 0.80 and 0.93, respectively, for
automatic knee and hip bone segmentation [2] [3]].

The two scans were taken with the same MRI scanner and
resolution settings but with different subjects. Without chang-
ing any parameters, the automatic segmentation performed
very well for both scans. This suggests that the parameters
can be tuned once for a particular MRI scanner, and then left
alone to automatically segment many scans across different
subjects.

As shows, the errors mostly occur at the ends of
the bones, where the trabecular tissue is darker and the cortical
tissue is thinner. Sometimes, the cortical tissue is thinner than
a pixel. Thus, the edges are less pronounced and do not show
up as easily with MSER.

Fig. 7. Top left: manual reference segmentation. Top right: automatic
segmentation. Bottom: mislabeled voxels.

V. COMPARISON TO ALTERNATIVE APPROACHES
A. 3D Otsu Thresholding

A simpler implementation for automatic segmentation might
use adaptive Otsu thresholding. In theory, this would work
well to separate the bright trabecular tissue or the dark cortical
tissue of the bone from the other tissues. We tested 3D Otsu
thresholding with various window box sizes and step sizes, but
failed to produce segmentations that could be further processed
to isolate the radius and ulna.



Fig. 8. 3D adaptive Otsu thresholding performs poorly on all window sizes.

The issue is that in areas where the dark cortical tissue
is lighter, it gets labeled as a bright area, thus connecting
the bright trabecular and muscle tissues. Like MSER, this
is particularly an issue at the ends of the bones, where the
trabecular and cortical tissues have similar brightness levels.
However, unlike MSER, because the areas of connection
between bone and muscle tissue are so large at the ends of
the bones, they cannot be easily split with operations such as
morphological opening. With such poor performance on the
radius and ulna, adaptive Otsu thresholding fails to compete
with MSER.

B. 3D Sobel Surface Detection

Another implementation might use an edge detection algo-
rithm such as Sobel, but extended to detect oriented surfaces
in 3 dimensions.

The standard 2D Sobel operator can be defined as follows:
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With this definition, extending to three dimensions is
straightforward:
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Applying the three filters to the image, taking their sum
of squares, and then thresholding the voxels with the largest

gradients results in a segmentation as shown in

Fig. 9. Sobel filtering with a magnitude threshold set to highlight the top
10% brightest pixels.

The Sobel segmentation is cleaner than adaptive Otsu seg-
mentation, but like the Otsu method, Sobel connects the bone
tissue with muscle tissue at the ends of the bones where the
cortical layer is thin. Thus, the bone segmentations cannot
be extracted easily from the muscle with Sobel, and MSER
remains the most robust method.

VI. DISCUSSION & FUTURE WORK

With an average DSC of 0.98, the method presented in
this paper beats state-of-the-art records with a fully automated
approach. The high accuracy of this method means that
the amount of manual post-processing required to bring the
automatic segmentation up to the golden standard is minimal.
Furthermore, the robustness of the parameters to different
subjects means that many MRI scans can be automatically
segmented without constant supervision.

Like all the segmentation methods explored in this paper,
2D MSER'’s weakest point is the segmentation of the ends of
the ulna and radius. As a result, it likely cannot achieve 0.98
DSC on smaller bones such as hand bones with thin cortical
tissues. Further refinement is required to resolve this issue.

One possible future direction may be to apply a fully 3-
dimensional MSER method that uses 3D level sets to find
closed 3D volumes. 3D MSER would likely perform better



than 2D MSER in cases where the thin cortical tissue tissue
is tangential to the 2D slices, since it could still detect
the surface from a different angle. However, it would also
require more consistent lighting throughout the MRI volume;
performing 2D MSER has the benefit of ignoring brightness
changes between slices. Thus, 3D MSER would place greater
importance on adaptive histogram equalization.

Another possibility is using the method proposed in this
paper as input for semi-automatic boundary-seeking segmen-
tation methods such as those presented by Rusu [5] and Jolivet
et al. [[6]. The combination of these methods could result in a
fully automatic pipeline for robust bone segmentation.
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