
   

 

   

 

Stereo Correspondence with Occlusions using Graph 

Cuts 
EE368 Final Project 

 

Matt Stevens 

mslf@stanford.edu 

 

Zuozhen Liu 

zliu2@stanford.edu 

 

 

I. INTRODUCTION AND MOTIVATION 

Given two stereo images of a scene, it is possible to recover 
a 3D understanding of the scene. This is the primary way that 
the human visual system estimates depth. This process is useful 
in applications like robotics, where depth sensors may be 
expensive but a pair of cameras is relatively cheap. In order to 
construct depth maps from stereo images, we need to first solve 
the stereo correspondence problem. The stereo correspondence 
problem has traditionally been one of the most studied topics in 
image processing and computer vision[1] but it is still an area of 
active research. 

Graph cut algorithms proposed by Boykov et. al.[2] 
represent a framework that reduces energy minimization 
problems to network flow problems. Since a number of 
problems in computer vision can be formulated as some form of 
energy minimization, graph cut algorithms have a wide range of 
applications such as: image restoration, stereo correspondence 
and image segmentation.  

In this project, we combined our interests to implement a 
graph cut algorithm for stereo correspondence[3] and performed 
evaluation against a baseline algorithm using normalized cross 
correlation (NCC) across a variety of metrics. Specifically, we 
investigated on the effectiveness of labeling disparities and 
handling occlusions for the graph cut algorithm. We used a pre-
aligned stereo image dataset with ground truth disparities from 
Middlebury College to benchmark performance[4].  

 

II. RELATED WORK 

After decades of active research, an enormous amount of 
different methods and techniques have been proposed to solve 
the stereo correspondence problem[5]. By and large, these 
methods can be categorized into two main approaches: local 
methods and global methods.  

Local methods tend to consider a small window around each 
target pixel and encode certain smoothing constraints into a cost 
function computed over the entire window area. By minimizing 
the cost function, a best disparity value is selected for the given 
target pixel. Despite various optimized methods proposed such 
as Adaptive Support Weight [6], Slanted Window[7], local 
methods still face the limitation of handling occlusion in 

matching process. Our baseline NCC method is also a naive 
local method. 

Global methods are different from local approaches in that 
the smoothness and occlusion constraint can be directly encoded 
in a global energy function of a given disparity map. The goal is 
to use various optimization techniques to achieve a disparity 
map that minimizes the global energy function. An exact 
minimization of the energy function is NP-complete. However, 
with certain selection of a smoothness term, the minimization 
can be computed efficiently via Dynamic Programming[8].  

Graph cut algorithms also belong to global methods and can 
be applied to optimizing the energy function in a more 
generalized way. In recent years, variations of the original graph 
cut algorithm[3] have been proposed to either improve 
performance or runtime such as LogCut[9]. However, alpha-
expansion, a core step of graph cut, remains widely adopted as 
the optimization engine for later algorithms. Therefore, the goal 
of this project is to study the fundamentals of a class of graph 
cut algorithms and develop insights on how the algorithm 
handles occlusion, which remains a challenge in local methods. 

 

III. GRAPH CUT  

In this section, we will explain the workflow of graph cut 

algorithm in more detail. First step is to reformulate the problem 

as an energy minimization problem on a Markov Random Field 

(MRF).  Next step is to iteratively perform alpha-expansion by 

using a min-cut minimization to achieve an optimal labeling 

configuration. An overview of the workflow is summarized in 

the figure below. 

 

Fig. 1. Workflow diagram 

 



   

 

   

 

A. Markov Random Field 

If we consider each pixel in the reference image as a node 

in the MRF, we can take its unique disparity value to be its 

label. Now since a MRF only has a finite set of labels, we need 

to select a discrete set of disparity values to consider. In our 

implementation, we computed the minimum and maximum 

disparity values d_min, d_max from the given ground truth 

disparity map for every input image pair and took [d_min, 

d_max] as the interval for all possible disparity values. 

Besides defining the label set, we also need to select a 

neighboring system for MRF and our implementation adopted 

a 4-neighbor system. With a complete definition of the MRF 

for stereo correspondence, our goal is to find a best labeling 

configuration for the MRF that minimizes certain energy 

function. 

B. Energy Function 

Denote the set of possible labeling configuration as: 

𝐴 = {(𝑝, 𝑞) | 𝑝𝑦 = 𝑞𝑦 , 0 ≤ 𝑞𝑥 − 𝑝𝑥 < 𝑘}

For any unique disparity configuration f on the entire image, 

the energy function is defined as follows: 

𝐸(𝑓) = 𝐸𝑑𝑎𝑡𝑎(𝑓) + 𝐸𝑜𝑐𝑐(𝑓) + 𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝑓)

 The data term represents the cost of intensity difference 
between corresponding pixels. 

 The occlusion term imposes a constant penalty cost for 
occluded pixels 

 The smoothness term adds a constraint to make 
neighbor pixels have similar disparities. Specifically, 
there is a constant cost if one labeling assignment is in 
the configuration and its neighbor pixel's assignment 
with the same disparity value is not in the 
configuration. 

C. Alpha-Expansion 

We first define alpha-expansion as the set of all possible 
assignments for next update. The constraint is that this set is a 
union of previous active assignments and assignments with 
disparity alpha. In other words, at every iteration, we could only 
either cancel active assignments or make new assignments with 
disparity alpha. The algorithm would iterate until no new 
assignments can lower the energy function.  

After initializing a unique configuration, we can then 
iteratively refine our configuration by performing alpha-
expansion to minimize the global energy function. We perform  
an alpha expansion for every value of alpha. We continue to 
cycle through values of alpha until the model no longer changes, 
meaning that the algorithm has arrived at its local optimum, and 
we terminate. The question is then, how to find a configuration 
that minimizes the energy function within an alpha-expansion in 
step 3.1. This leads to our discussion on the min-cut graph. 

D. Min-cut Graph 

At each iteration, we can define the following notation:  

TABLE I.  COST MODEL TERMINOLOGY 

𝐴0 
set of active assignments in current 
configuraiton 

𝐴𝛼 
set of potential assignments with disparity 
alpha 

𝐷(𝑎) data cost of an assignment 

𝐷𝑜𝑐𝑐(𝑎) occlusion cost of an assignment 

𝐷𝑠𝑚𝑜𝑜𝑡ℎ(𝑎) smoothness cost of an assignment 

𝑉 smoothness constant 

𝐶𝑝 occlusion constant 

  

The steps to construct a min-cut graph is decomposed into:   

1. Create a source and a sink node.   

2. Insert each correspondence assignment in set as a node 

into the graph  

3. Insert edges and its weight between two nodes into the 

graph based on the table below 
 

TABLE II.  EDGE WEIGHTS 

 

A detailed proof of how a min-cut in this graph is equivalent 
to optimal configuration that minimizes the energy can be found 
in [3].  

E. Update Configuration 

Once we have constructed the graph discussed above, we 
would then be able to invoke a network flow routine to compute 
the min-cut on the graph. From the min-cut, we can retrieve new 
active assignments and update the configuration accordingly.   

IV. EXPERIMENTAL RESULTS 

For evaluation, a disparity dataset containing images and 
ground truth disparity values was obtained from the Middlebury 
Stereo Vision Page. Occlusions in the ground truth disparity 
map were not provided and were calculated based on physical 
principles. A pixel that corresponds to a pixel outside the other 
image's boundary is labeled as occluded. A pixel that 
corresponds to a pixel with a different disparity (with a threshold 



   

 

   

 

of 2) is also labeled as an occlusion. These ground truth disparity 
maps allow us to objectively evaluate the performance of the 
stereo algorithms presented here. Results of our stereo 
algorithms are shown in Fig. 2. 

 

 

Fig. 2. Disparity algorithm results. Upper left: source image, upper right: 

ground truth, lower left: NCC algorithm, lower right: graph cut algorithm 

For the normalized cross correlation algorithm, a quick 
visual comparison of the algorithmically generated disparity 
maps to the ground truth reveals that NCC captures the general 
sense of the scene, but also introduces a significant amount of 
noise. Noise occurs when the template match is too weak to 
trigger a response that stands out. This occurs especially on 
smooth surfaces like in the second set of images, leading to a 
great deal of noise in these regions. In the first image, the 
repetitive pattern means that multiple locations in the image will 
produce a response from the template, leading to the bimodal 
response that is observed. However, considering the simple 
nature of the algorithm, the results are reasonable. 

Analyzing the graph cut disparities reveals three main traits: 
the graph cut algorithm approximates the values well, but it 
introduces sharp jumps in disparity value, and it also introduces 
thin lines of occluded pixels. These artifacts are somewhat 
inherent to the formulation of the algorithm. As for the lines, 
there is a strict constraint that corresponding pixels must 
correspond only with each other. This means that at the 

boundary of some region of constant disparity, either the right 
or left side must be occluded. Short of loosening the problem 
constraints, there is no real way to solve this issue. The sharp 
jumps are a result of the smoothing term in the model, which 
encourages piecewise-constant regions, and thus sharp 
boundaries at the edges of these regions. A reduction in the 
smoothing parameter would decrease these sharp jumps, but also 
increase the level of noise from mislabeled disparities. 

Although the qualitative results of our graph cut 
implementation look promising, it is important to look at 
quantitative results as well. We evaluated our graph cut 
algorithm and our baseline algorithm on a number of metrics, 
looking for two things - how accurately does the algorithm label 
disparities, and how accurately does it label occlusions. 
Labeling occlusions is a binary classification problem and can 
be assessed using a number of metrics. We measured false 
positive rate and false negative rate, as in [3]. For overall 
accuracy, we measured "Gross Errors", the percent of pixels that 
do not match within a certain threshold, also used in [3]. In 
addition, we measured bias and R2 coefficient over pixels 
unoccluded in both test and ground truth images to measure how 
accurately the algorithms predict the disparity and what effect 
outliers have. 

In both accuracy and occlusion labeling, the normalized 
cross-correlation algorithm performed quite poorly, as is 
expected of an algorithm with no filtering or smoothness 
constraints. 

Our implementation of the graph cut algorithm did not 
perform as well as the original algorithm we intended to adapt 
in terms of overall accuracy, getting a significantly lower score 
in terms of gross error percentage. It is worth noting that the 
dataset used for testing contains many difficult images, with 
untextured regions and occlusions. The dataset used for testing 
the reference algorithm was highly textured with plenty of visual 
cues for judging disparity. So some amount of the poor relative 
performance of our graph cut algorithm is likely due to a more 
difficult test set. And our version of grab cut missed fewer 
occlusions, so it did improve in one area. 

Below the results of our benchmarks are summarized. The 
following are mean values with and standard deviation across 
our dataset for the NCC method, our graph cut method (GC) and 
the graph cut method of [3] (GC Ref.): 

TABLE III.  BENCHMARK RESULTS 

 
Gross 

Errors 

False 

Neg. 

Rate 

False 

Pos. 

Rate 

Bias 

(px) R2 

NCC 72±5% 68±12% 3.7±0.8% 0.8±3.8 0.25±0.53 

GC 16±12% 26±17% 4.8±3.7% -1.0±1.8 0.76±0.31 

GC 

Ref.a 

1.9% 42.6% 1.1% - - 

a. Results measured on a different dataset, see [3] 

The positive bias of the NCC algorithm indicates that it is 
mislabeling values as high disparities. This is supported by a 
visual inspection of the test images. and the negative bias of the 
graph cut algorithm indicates that is not detecting values with 
high disparities, or the foreground of the scene. This 
interpretation is also supported by the first test image shown 



   

 

   

 

earlier. It may be that the very most foreground elements tend to 
protrude sharply, and the smoothing of the algorithm is clipping 
these high disparities to lower values. 

The graph cut algorithm was highly variable in its 
performance, which suggests that there is more work to be done 
in tuning the algorithm to suit all scenarios. In the best cases, the 
algorithm had excellent performance, on par with the standard, 
however in many cases there were large errors, particularly for 
scenes with either complicated or ambiguous geometry. 

 

 

Fig. 3. Modes of failure. Left: original, middle: ground truth, right: graph cut 

results. The combination of ambiguous geometry, untextured surfaces, and 
occlusion leads to large errors. The image above features untextured surfaces 

on the wall and the board, as well as an occluding object in the middle and many 

occlusions in the foreground. The image below features ambiguous features 
whose depth cannot necessarily be resolved by stereo correspondences. 

V. EVALUATION OF SYSTEM PARAMETERS 

As mentioned in section III, the graph cut algorithm balances 
three different cost functions, one for pixel matching, one for 
occlusion, and one for smoothing. There are two parameters to 
control the relative importance of these three functions: 𝐶𝑝 and 

𝑉. 𝐶𝑝 represents the cost of occluding a pixel, and 𝑉 represents 

the cost of a discontinuity in disparity values. Both of these 
parameters are scaled to the pixel matching cost function, which 
in turn depends on natural image statistics. The original authors 
parameterized both 𝐶𝑝  and 𝑉  in terms of a different cost, 

lambda, keeping their relationship fixed, close to one to one. In 
our work, we investigated the tradeoff between smoothing, 
occlusion error, and pixel matching. Fig. 4 shows the 
relationship between the importance of occlusions and 
smoothing and the error of the algorithm. If the occlusion cost is 
too low, then the entire image will be labeled as an occlusion, 
leading to multiple types of errors. If too much emphasis is 
placed on avoiding occlusions, the algorithm will attempt to 
label occluded pixels and introduce errors. Similarly, if too little 
smoothing is applied, the disparity labels will be noisy. And if 
too much smoothing is applied, diminishing returns set in, and 
the results start to look visually less appealing. 

 
Fig. 4. Parameter tuning for graph cut - white areas are desirable and colored 

areas contain errors 

𝐶𝑝 of 200 and 𝑉 of 200 were chosen to be an optimal trade-

off between mislabeling occlusions and mislabeling disparities. 

The NCC algorithm has one parameter, window size. The 
larger the window size, the more regularization is applied, and 
the smoother the image. However, a large window size also 
makes it difficult to detect sharp edges where different parts of 
the template may match differently. We found an optimal 
window size to be 9 pixels. 

VI. COMPARISON TO ALTERNATIVE APPROACHES 

In 2002, graph cut algorithms were the state of the art for the 
stereo correspondence problem [1], but they have since been 
supplanted by methods involving convolutional neural 
networks. However, MRF methods, the same basis underlying 
graph cuts, still have state of the art performance [11]. 

Graph cuts, as a global optimization method, are much more 
powerful than local methods. That was illustrated in the extreme 
by our two algorithms, the NCC algorithm which is purely local, 
and the graph cut algorithm which is global. However, the graph 
cut algorithm took roughly 20 times longer to run than the NCC 
algorithm. Even with performance optimizations, it is a slow 
technique, and is ill-suited to many applications of stereo 
imaging like robotics. 

VII. DISCUSSION, LIMITATIONS, AND FUTURE WORK 

An important area of future work would be better 
quantitative analysis of performance. The data used for analysis 
in [1] and [3], the primary sources for this paper, was only 
available with a left disparity map, and not a right one, meaning 
it was not possible to calculate occlusions given this data. 
Furthermore, the method for calculating occluded and texture-
less regions in not explicitly mentioned in the sources. The 
authors of [1] provide an SDK for testing, but there was not 
enough time in the scope of the project to integrate with this 
SDK. A best effort was made to quantify our performance in a 
way that would be relatable to other algorithms, however there 
is still work to be done. 

In 2002, graph cut algorithms were the state of the art for the 
stereo correspondence problem [1], but they have since been 



   

 

   

 

supplanted by methods involving convolutional neural 
networks. However, MRF methods, the same basis underlying 
graph cuts, still have state of the art performance [11]. But if we 
accept that our goal is not state of the art performance, there are 
still techniques to improve results within the realm of graph cuts. 

The graph cut optimization framework is distinct from the 
cost functions used in the model, and improved cost functions 
can give better results. The pixel matching cost 𝐸𝑑𝑎𝑡𝑎 can have 
a significant effect on the performance of the algorithm [12]. 
One such cost function is described by Birchfield and Tomasi, 
and is invariant to image sampling [13], which gives better 
matching results near sharp edges in images where intensity 
values may differ greatly. The algorithm works by examining 
the neighboring pixels of corresponding pixels to determine how 
quickly the image is varying, and to lower the dissimilarity when 
the image intensity is rapidly changing. This matching technique 
was implemented in our system, but was found not to improve 
results. However, this matching cost uses absolute error instead 
of squared error, so the smoothing and occlusion parameters had 
to be adjusted, and it is possible that they were not adjusted 
optimally. In the future, more sophisticated cost functions such 
as NCC or cost functions using filters could be investigated for 
potential improvements [12]. 

REFERENCES  

[1] D. Scharstein and R. Szeliski, “A Taxonomy and Evaluation of Dense 
Two­Frame Stereo Correspondence Algorithms,” Int’l J. Computer 
Vision, 2002. 

[2] Y. Boykov and V. Kolmogorov, “An Experimental Comparison of Min-
Cut/Max-Flow Algorithms for Energy Minimization in Vision”, In IEEE 
transactions on Pattern Analysis and Machine Intelligence (PAMI), vol 
26, no.9, pp 1124-1137, Sept 2004. 

[3] V. Kolmogorov and R. Zabih, "Computing visual correspondence with 
occlusions using graph cuts", In ICCV, volume II, pages 508–515, 2001. 

[4] Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nešić, N., 
Wang, X., & Westling, P. (n.d.). High­Resolution Stereo Datasets with 
Subpixel­-Accurate Ground Truth. Lecture Notes in Computer Science 
Pattern Recognition, 31­42. 

[5] M. Bleyer and C. Breiteneder, “Stereo Matching - State-of-the-Art and 
Research Challenges,” in Advanced Topics in Computer Vision. Springer, 
2013, pp. 143–179 

[6] K.-J. Yoon and I.-S. Kweon. “Locally Adaptive Support-Weight 
Approach for Visual Correspondence Search”. In CVPR, pp.924–931, 
2005. 

[7] M. Bleyer, C. Rhemann, and C. Rother, “Patchmatch Stereo—Stereo 
Matching with Slanted Support Windows,” Proc. British Machine Vision 
Conf., 2011 

[8] I. J. Cox, S. L. Hingorani, S. B. Rao, and B. M. Maggs, " A maximum 
likelihood stereo algorithm.", in CVIU, 63(3):542–567, 1996. 

[9] Victor Lempitsky, Carsten Rother, and Andrew Blake, “Logcut-efficient 
graph cut optimization for markov random fields,” in Computer Vision, 
2007. ICCV 2007. IEEE 11th International Conference on. IEEE, 2007, 
pp. 1–8. 

[10] J. Zbontar and Y. LeCun. “Stereo Matching by Training a Convolutional 
Neural Network to Compare Image Patches”, in CVPR,  1510.05970, 
2015. 

[11] M. G. Mozerov and J. V. D. Weijer, “Accurate Stereo Matching by Two-
Step Energy Minimization,” IEEE Transactions on Image Processing, pp. 
1153-1163 

[12] H. Hirschmuller and D. Scharstein. “Evaluation of cost functions for 
stereo matching.” In IEEE Computer Society Conference on Computer 
Vision and Pattern Recognition (CVPR 2007). 

[13] S. Birchfield and C. Tomasi, “A Pixel Dissimilarity Measure That Is 
Insensitive to Image Sampling”, In IEEE Transactions on Pattern 
Analysis and Machine Intelligence, pp. 401-406, 1998. 

APPENDIX - WORK BREAKDOWN 

Data Acquisition – Matt 

Error Metrics – Zuozhen 

Baseline NCC Algorithm – Matt 

Graph Cut Model – Zuozhen 

Max Flow Integration – Matt 

Poster Design – 50/50 

Final Report – 50/50 

 


