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Motivation Optimization with Total Variation Penalty

« In many applications, we can only measure the magnitude of min{G(z) = ||| Fz| — b||5% + 2ATV(x)} where TV (z) = ||Vz||;
the Fourier transform of a signal reC

 Examples: Optical imaging, X-ray crystallography, astronomy
 However, phase contains important information!

TV penalizes difference between neighboring pixels, smoothing/denoising signal
« Solve with proximal gradient method using dual approach on convex sub-problem
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« Ps: Project into set of signals with same support
« Pp: Project into set of signals with same Fourier magnitude
« Combine in weighted sum and iterate
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Reconstruction Error vs. TV Weight

0.113 TV reqgularization reduces graininess,

o1z resulting in smaller reconstruction error
Ty = 0111 _ ER 0.3474 0.5670
L = err(a:'* ’U) — [z —vlr
| T Tl HPR  0.1258 0.2781
Reduction (ER) = 0100 | © Must search over parameters (A, L) RAAR 0.1372 0.3410

| » As noise grows, compensate by raising
TV weight at cost of lower accuracy
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