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It has been proposed that humans experience 7 basic emotions, and exhibit them through
universally recognizable facial expressions [1][2]. It is of interest then to develop effective and
efficient computer algorithms that can recognize facial expressions for both data analysis and 
real-time tasks, finding applications in entertainment, criminal justice, healthcare and more. 

As emotion detection is significant for both human-human and human-computer interaction, 
there has been much work in face detection, face recognition, and expression recognition.
Some of note are the use of Gabor wavelets with neural networks [3], the detection of Active 
Appearance Models and support vector machine (SVM) classification [4], local binary pattern 
extraction [5], and histogram-of-gradient (HOG) feature extraction [6]. 
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A dual-approach emotion detection algorithm is implemented in MATLAB using Fisherfaces and 
HOG+SVM, trained on 240 images from the CK+ dataset [4]. This allows for faster detection 
via projection on Fisherfaces for easier-to-detect emotions, or HOG extraction (leveraging the 
fact that there are unique inner facial feature manipulations to express emotions) and 
classification if further predictive measures are required. The algorithm works reasonably well 
on test images from the CK+ dataset, performing with same accuracy as HOG-only but with a 
speed improvement of 20%.  The algorithm however has trouble with test samples from the 
JAFFE dataset [7] and some random test samples. This may be attributed to factors such as 
face-angling and nuanced/mixed expressions for non-dataset images. Future work should 
involve larger training sets, exploration of other feature identification techniques, and 
examination of more subtle/undefined facial expressions.
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