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Abstract—Pathology is the study of the cause and 

effect of disease from tissue samples on microscope 

slides.  The assessment of a tissue sample, which is 

inspected under a microscope, is inherently subjective, 

and can cause disagreement amongst pathologists.  

Therefore, tissue analysis is an area where objective 

quantification can be critically helpful in determining 

the right diagnosis or prognosis.  Here, we evaluate a 

set of algorithms for nuclei detection and 

segmentation in hematoxylin and eosin (H&E) stained 

tissue samples. 
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I. INTRODUCTION 

Tissue samples, usually extracted from biopsies, 
surgeries, or excisions, are used for clinical diagnosis and 
prognosis for millions of patients each year.  In 2014, 
Medicare, which covers approximately 30% of the United 
States population, reimbursed microscopic analysis of 
pathology samples nearly 20 million times, amounting to 
$964 million [1]. 

This procedure usually involves a pathologist, who 
inspects a tissue sample under a microscope.  From the cell 
morphology and tissue structure, he or she aims to 
understand the learn about the patient’s disease and draw 
conclusions that lead to a diagnosis or prognosis. 

However, this process is inherently subjective.  As a 
result, a pathologist often calls upon his or her colleagues 
for a second opinion.  In many cases, when that second 
pathologist views the same microscope slide, he or she 
may draw a different set of conclusions. 

In parallel, the advent of the digital age has ushered in 
a new generation of digital pathology scanners, which are 
capable of whole slide imaging.  That is, these automated 
scanners can provide a high-resolution image of an entire 
tissue sample in just a few minutes.  There are two primary 
benefits of this technology.  First, sharing a digital slide is 
much easier than sharing a physical one, and it is easy for 

two pathologists in remote locations to compare analyses 
with one another. 

Second, a digital slide paves the way for automated 
image analysis.  Learning models and image processing 
algorithms can provide quantitative, objective 
determinations about a given tissue sample, such as the 
average size of the nucleus in a specific region of interest.  
This is especially important in the diagnosis of various 
forms of cancer, as tumor cells tend to be characterized by 
a large nucleus with an irregular size and shape [2]. 

While there are many modes of microscopy, such as 
brightfield, fluorescence, and phase contrast, these types 
of images all share a common need to begin analysis by 
performing detection and segmentation of individual cells.  
However, many of the most commonly used stains do not 
specifically stain the cell membrane – instead, stains such 
as hematoxylin (brightfield) or DAPI (fluorescence) dye 
the nuclei.  Therefore, we begin with nuclei detection and 
segmentation as the initial and most fundamental step in 
digital pathology image analysis. 

II. PREVIOUS WORK 

There are a number of algorithms that have been 
utilized for the problem of nuclei detection.  That is, given 
an image of a tissue sample, we would like to define a 
single point (x, y) that is located within the nucleus for 
each cell in the image. 

The first class of algorithms utilizes the distance 
transform, coupled with the watershed transform, to detect 
the centers of nuclei.  For example, Adiga et al. used a s 
set of preprocessing filters such as directional diffusion 
before applying a distance transform in multispectral 
images of breast cancer tissue with the goal of analyzing 
genetic changes in cell nuclei that are far aware from the 
primary tumor [3]. 

A second class of algorithms relies on morphological 
operators, specifically the erosion operation.  Yang et al. 
approach this problem by utilizing two sets of structuring 
elements that are 7x7 and 3x3 [4].  They iteratively apply 
erosions with the 7x7 coarse filters until a specified 



threshold is reached, and then apply the 3x3 fine filters 
until another threshold is reached.  The resulting markers 
then represent the nuclei in the image.  What makes these 
techniques more complex to implement is that one needs 
to start with a binary image, so the original pathology slide 
needs to be binarized in some fashion. 

 

Figure 1: The fine and coarse structuring elements used by Yang [4]. 

 The H-minima and maxima transforms are two 
alternative methods that build upon morphology 
operations.  These two transforms suppress regional 
minima / maxima that whose depth / height is smaller than 
a parameter h, respectively.  The results from this 
operation are highly dependent on the value chosen for h, 
which can be iteratively determined.  For instance, Cheng 
et al. continuously increase the value of h until region 
merging between two previously distinct nuclei occurs [5]. 

 Shifting gears, the Laplacian of Gaussian (LoG) filter 
has also been used as a blob detector.  There are numerous 
variations of this technique, such as the multi-scale version 
proposed by Al-Kofahi et al. to make the detector scale-
invariant [6], or the elliptical Gaussian kernel put forward 
by Kong et al. that can detect rotationally asymmetric 
nuclei [7]. 

𝐺(𝑥, 𝑦) = 𝑍 ∙ 𝑒−(𝑎𝑥
2+2𝑏𝑥𝑦+𝑐𝑦2) 

Equation 1: A Gaussian kernel whose shape and orientation can be 

tuned by the parameters a, b, and c [7]. 

 The final class of algorithms is the Hough transform, 
which was generalized to detect arbitrary shapes by 
Ballard [8].  This is especially useful for detecting nuclei, 
which are often circular or elliptical in pathology images.  
The Hough transform is usually used in conjunction with 
an edge detector, such as the Canny detector or Sobel 
filters.  However, the downside is that the results of the 

Hough transform can be noisy, and additional noise 
suppression steps are required. 

III. METHOD 

A. The Dataset 

 Our dataset consists of histology images of a normal 
pancreas from the Iowa Virtual Slidebox [9].  We 
extracted several regions of interest from a set of slides 
that were obtained at a 40x magnification. 

 

Figure 2: A region of interest in full color from the digital slide of 

pancreas tissue. 

B. Linear, Color-Based Pixel Classifier 

 We began by transforming the full-color pathology 
slide into a grayscale image, where each pixel reflected the 
likelihood of being a nuclei pixel. 

 To do this, we asked the user to select a rectangular 
region of interest within the image that consisted entirely 
of nuclei pixels, and another region of interest that 
consisted of non-nuclei pixels (e.g. cytoplasm).  We then 
compute the RGB, HSV, and LAB color values for both 
the nuclei and non-nuclei pixels.  These colors are used as 
the feature matrix in our linear regression classifier. 

 We then use our classifier to predict the likelihood that 
any pixel in the original image belongs to a nucleus of a 
cell.  This process results in an image such as Figure 3. 

 

Figure 3: The transformed nucleus "map" as predicted by the color-

based pixel classifier. 



 Inspection of Figure 3 validates our hypothesis.  The 
nuclei have been transformed into brighter regions, while 
the cytoplasm and other non-nuclear regions are black.  
However, while approximately three-quarters of the nuclei 
are distinct, the other one-fourth are overlapping, or are 
joined together by artifacts from our classifier. 

 If we analyze the original image, we will see that these 
artifacts are the byproduct of the hematoxylin stain which 
causes a purplish smear in the regions between nuclei. 
This is due to the fact that hematoxylin will bind to RNA 
in the ribosomes, which are located in the rough 
endoplasmic reticulum.  Consequently, we need to apply 
additional image processing techniques to adjust for this 
biological reaction. 

C. Blob Detection 

Our next step is to utilize cell morphology – 

specifically the fact that nuclei are often circular or 

elliptical in nature.  We first apply a Gaussian filter with 

σ = 2 to smooth the image since the nuclei have a grainy 

texture.  Then, we apply a morphological opening 

operator on our grayscale image to detect circular blobs, 

which can be visualized in Figure 4. 
 

 

Figure 4: The resulting blobs from the a morphological opening (left) 

and the results from finding the regional maxima (right). 

 However, at this point, the morphological opening 
picks up some of the smear discussed in the previous 
section.  We can remove these false positives by 
identifying the regional maxima.  This takes advantage of 
the property that nuclei are almost always brighter in the 
grayscale image than the smear that joins them together. 

 A connected components analysis, followed by the 
computation of the centroids, leads to a map of the “seed 
points” of the nuclei (Figure 5).  While a more detailed 
analysis will be given in the Results section, the largest 
source of false negatives (i.e. nuclei that were not 
detected) are nuclei that overlap with one another.  In these 
cases, only one of the overlapping nuclei are detected.  
This is the result of the application of the regional maxima 
algorithm.  If there are multiple connected nuclei, the 
regional maxima algorithm will preserve the one with the 
highest intensity value. 

 

Figure 5: The seed points of the nuclei (pink) overlayed on the 

original tissue sample (green). 

D. Morphological Opening and Closing by 

Reconstruction 

With a developed algorithm for nuclei detection, we 

pivoted to the problem of segmentation.  To do this, we 

used a different set of morphological operators, namely 

the morphological reconstruction. 

In contrast to a standard morphological opening or 

closing, morphological reconstruction: 

 

1. Utilizes two images, a marker and a mask.  In an 

opening-by-reconstruction, the marker is an 

eroded image, and the mask is the original image.  

In a closing-by-reconstruction, the complement of 

a dilated image is the marker, and the complement 

of the original image is the mask. 

2. Instead of using a structuring element, the 

reconstruction is based on the connectivity of the 

pixels. 

3. Dilations are repeated on the marker, until the 

contour of the marker fits inside the mask.  Once 

the modified marker image no longer changes, the 

processing stops. 

 

Figure 6: The nucleus map, after an opening and closing by 

reconstruction. 



When we apply an opening-by-reconstruction 

followed by morphological closing-by-reconstruction, we 

get the result in Figure 6.  The smearing of the 

hematoxylin dye is once again present in this image.  In 

order to alleviate this, we can once again find the regional 

maxima.  If we then overlay this an eroded version of the 

regional maxima (pink) on top of the gradient of the 

image (green) in Figure 7, we notice that while most of 

the cells are detected, a few of the cells are joined 

together. 
 

 

Figure 7: The regional maxima overlaid on the gradient of the 

nucleus map. 

To separate these cells, we will need use these maxima as 

the foreground markers for a watershed segmentation. 

 

E. Segmentation using Marker-Controlled Watershed 

Transform 

 With foreground markers in hand, the other piece of the 
puzzle is the set of background markers, which we can 
compute using the following algorithm. 

1. Binarize the image that has been morphologically 
reconstructed. 

2. Calculate the distance map based on the inverse of 
this binary image, and negate the result (Figure 8). 

3. Apply the watershed transform, and preserve the 
ridge lines, which are the pixels that have a value 
of zero.  These are our background markers. 
 

 

Figure 8: The distance map of the binarized image. 

The final two steps of our algorithm include another 

morphological reconstruction that imposes regional 

minima where are foreground and background markers 

are, and a watershed transform on the gradient of the 

image, resulting in Figure 9. 
 

 

Figure 9: The watershed segmentation of the pancreas tissue. 

While the overall recall of the nucleus segmentation 

algorithm is not as high as one would like, the shapes of 

the segmentation appear to be relatively accurate. 

IV. RESULTS AND DISCUSSION 

A. Nuclei Detection 

We performed a manual count of the detected nuclei in 
a randomly sampled region of the pancreas tissue slide, 
and obtained the results found in Table 1. 

123 
True Positives 

20 
False Negatives 

9 
False Positives 

 

Table 1: Confusion matrix for the nuclei detection algorithm. 

 In other words, 123 of our seed points were inside 
actual nuclei, 9 of the seed points were outside the nuclei, 
and we failed to detect 20 of the nuclei altogether.  
Therefore, the precision of our detection algorithm was 
93.2%, the recall was 86.0%, and the overall accuracy was 
80.9%.  

Upon inspection of the opening-based blob detector 
(Figure 4, left), we can see that almost every nucleus was 
still present in the image.  However, once we determined 
the regional maxima, we “lost” several of the nuclei.  The 
reason for this is that the regional maxima preserves only 



the pixels with the highest intensity value in a connected 
component.  If several nuclei are connected to one another, 
then only one will be preserved. 

One approach for improving the recall is to apply an 
iterative regional maxima operation.  That is, after we find 
our initial set of regional maxima, we can subtract them 
from the blob image (Figure 4, left), and detect a new set 
of regional maxima based on this image.  For each 
additional iteration, we will be able to find an additional 
nucleus in every group of overlapping nuclei.  However, 
this will add the risk of finding additional false negatives, 
so the number of iterations must be kept at a limit. 

On the other hand, there were a few false positives as 
well.  Upon analysis of the false positives, we can see that 
they correlated to connected components with low 
intensity values.  We can solve this problem by zeroing 
out any connected component whose average value falls 
below a certain threshold (e.g. 0.01). 

We would expect that application of both these 
techniques would lead to a strong improvement in the 
precision, recall, and overall accuracy of the nuclei 
detection algorithm. 

B. Nuclei Segmentation 

Our nuclei segmentation algorithm consists of three 
input algorithms: foreground marker detection, 
background marker detection, and gradient computation.  
As the latter is fairly straightforward, we need to 
investigate the effectiveness of our foreground and 
background marker algorithms.  Figure 10 illustrates this, 
showing both the foreground markers (black regions in the 
center of each cell), and the background markers (the 
black lines). 

 

Figure 10: The gradient image, with the foreground markers and 

background markers (ridge lines) superimposed. 

Our foreground markers appear to be largely accurate, 
as they are always found in the interior of the white edges 
of the gradient image.  However, we note that our 
watershed ridge lines cut across the center of many of our 

nuclei.  This is the likely cause of the low recall that is 
evident in our final watershed segmentation. 

One way to verify this is to modify the algorithm for 
calculating the distance map that is used to compute the 
watershed ridge lines.  In the algorithm described in the 
Method section above, we negate the distance map of the 
inverse of the binarized image.  If we simply compute the 
distance map of the binarized image, we get the result 
found in Figure 11.  

 

Figure 11: Watershed segmentation using an alternative approach to 

calculating the distance map. 

The recall of the algorithm is much improved, but the 
segmentation is unable to separate overlapping cells.  This 
is the inherent tradeoff of this alternative approach to 
calculating the distance map. 

As a result, we propose that further pre-processing or 
post-processing needs to be done on the distance map 
before using it to calculate the watershed ridge lines. 

V. CONCLUSION 

In this report, we have investigated the use of a 
supervised linear classifier to predict whether a pixel 
belongs to a nucleus based on its color.  This is useful for 
a number of reasons. 

1. It allows flexibility when dealing with different 
tissue types and staining protocols.  For example, 
if a user is imaging breast or head and neck tissue, 
the same classifier would be able to adapt to 
changes in illumination, color schemes, and digital 
pathology scanners. 

2. Through additional user feedback (e.g. the user 
identifies false positives and false negatives in the 
final segmentation), it is possible to refine the 
entire segmentation algorithm. 

The linear classifier could be improved by a wider 
selection of image features, such as neighborhood metrics 
(e.g. the average color values of a 3x3 neighborhood).  
Additionally, it could be made more flexible if the user 
was able to select a non-rectangular region of interest. 



We have also implemented and investigated algorithms 
for nuclei detection and segmentation and discussed areas 
for improvement. 

While the above does not yet constitute a clinical-ready 
set of algorithms for nuclei detection and segmentation, 
there continues to be significant potential for digital image 
analysis to improve the practice of pathology, and the 
diagnosis and treatment of patients across the world. 
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