
Effective Light Field Rendering for Thumbnails
Muhammad M. Almajid

School of Earth, Energy & Environmental Sciences
Energy Resources Engineering Department

Stanford University
Email: majimm0a@stanford.edu

Kuy Hun Koh Yoo
School of Earth, Energy & Environmental Sciences

Energy Resources Engineering Department
Stanford University

Email: kohykh@stanford.edu

Abstract—Light field (LF) cameras are gaining popularity
due to advances in lens technologies and new post-processing
capabilities. Consequently, new products are constantly being
developed that are designed to attract more consumers. For
example, there are currently several projects to develop and
apply LF technology on phone cameras (i.e. Linx and Pelican
Imaging). As the technology becomes more readily available
to everyday consumers, new and creative rendering procedures
will be required to maximize the utility of the captured data.
For the technology to be adopted, the rendered images must
provide fun/creative attributes that are beyond conventional
image manipulation (i.e. social media). In this project, we exploit
the fact that light field images have more data than conventional
images to come up with rendered images that could be animated
and saved in Graphics Interchange Format (gif).

I. INTRODUCTION

Lightfield images are different than conventional images in
that they capture the same scene from multiple perspectives.
The light field is usually parameterized by the two-plane
parameterization that was originally proposed by Levoy and
Hanrahan [1]. In this parameterization, each ray is described
by its intersection with the s, t plane and the u, v plane.
These two planes are parallel to each other and separated by
an amount that is equal to d as seen in Fig. 1. The s, t plane
is much sparser than the u, v plane as it includes the lentslets
of the camera (i.e. 7 ×7 versus 380×380). Even though the
s, t plane contains only a small number of perspectives of the
scene, other perspectives can be derived from the measured
ones using various rendering methods. In this report, we
explore some methods used for light field rendering and shed
light on future additions that could improve our algorithms.

II. PERSPECTIVES AND RAY TRACING

In order to trace the rays captured by any given perspective
on the s, t plane, we first parameterize the rays for an arbitrary
point in space. For simplicity we choose our reference point
to be [s= 0,t= 0,d= 0]. We then determine all vectors that
connect our reference point to the center of each pixel of an
image and normalize. We also compute the projection of the
normalized vectors onto a line passing through our reference
point and perpendicular to both the s, t and u, v planes.
Given our choice of reference point, this value is simply the
z-component of our normalized vector. The collection of rays
that pass through any point s, t, z is then given by:

Fig. 1: Two-plane parameterization of light rays. Figure was
taken from [2]

(u1, v1, d) = (s, t, z) + nk
D

vz
(1)

Where (s, t, z) represents the position of our virtual camera,
nk is the collection of normalized vectors, D is the distance
between our virtual camera and the u - v plane and vz is the
z-component of our normalized rays.

Any angular rotations are achieved by multiplying by the
corresponding rotation matrix. This parameterization automat-
ically takes into account the field of view and original image
resolution. We can now compute the intersection points of the
rays entering a given perspective on the u - v plane (u1, v1,
d) constrained to the FOV and image resolution.

III. RENDERING

A. Texture Mapping versus Quadrilinear Interpolation

Given our u, v plane ray intersection points for a given
perspective, we can render our image using several techniques,
Fig. 2a. Using textural maps involves selecting the pixels
closest to the new incident u, v points. This technique produces
some aliasing artifacts that are not visually appealing as shown
in Fig. 3a. The alternative approach is based on interpolation
over the 4 dimensions of our light field (i.e. quadrilinear
interpolation) using the closest physically captured rays as
shown in Fig. 3b. This method is effective in removing aliasing
effects (see GIF 1).



(a) Texture (b)

Fig. 2: (a) Texture mapping, and (b) quadrilinear interpolation.

(a) (b)

Fig. 3: (a) Texture mapping, and (b) quadrilinear interpolation.
The red box indicates where the images were zoomed to
illustrate aliasing effects.

Although we are able to produce clear images, quadrilinear
interpolation is only effective for scenes that have no depth
variations. When we have depth variations, we expect objects
to move proportionally to their distance from the camera as
we shift perspectives.

B. Depth-corrected Interpolation

The naive way to correct for depth is to assume a uniform
relative depth across the entire scene. Although this is not a
valid assumption for most cases, we explore the alternative to
understand the importance of depth. To visualize the differ-
ences, we show image subtractions in Fig. 4. Figure 4a shows
the difference between two images that have uniform depth but
are scaled by increasing factors, in this particular case we use
scaling factors of 2 and 5. We observe that all the pixels are
equally shifted proportionally to the scaling factor. When we
look at the GIFs generated from these uniform depth rendered
images, we can see that it exaggerates the shift for all pixels
(see GIF 2). Having this problem, we knew we had to estimate
a depth map for the scene to have a more realistic shifts based
on that.

It is possible to estimate a qualitative depth for certain
objects using the images captured on the light field. These are
determined by the movement of pixels as we move from one
lenslet to another. Nevertheless, this method requires that we
have high contrast changes to determine an acceptable depth
value. This results in sparse depth maps for most images. A
dense depth map is, however, needed to correct for perspective

(a) (b)

(c)

Fig. 4: (a) Uniform depth, (b) depth map estimate, and (c)
after depth consideration.

since we would expect closer objects to move less as we move
horizontally in thes, t plane.

To compute a dense depth estimate, we use an occlusion-
aware method [3]. In this method, the candidate occlusion
pixels are first computed by applying a Canny edge detection
and dilating the resulting image. Then, an initial depth estimate
is computed by shearing the light field data [4]. This gives a
sparse depth map that needs to be filled. To achieve that, the
algorithm performs depth regularization given an initial depth
estimate and occlusion cues using Markov Random Field
(MRF). Figure 4b shows the obtained dense depth estimate
that we used.

Figure 4c shows the difference between a uniform relative
depth versus the depth estimate in Fig. 4b. We notice that the
further the object, the more shift it has, that is very similar to
the uniform depth case. While when the object is close (like
the front bird), the relative depth map adjusts its shift such
that it gives the correct perspective (see GIF 3).

IV. VALIDATION

In order to validate our developed methods, we compare
how our methods perform against an example in the LF tool-
box that chooses 2D slices of the light field image simulating
a circular path [5] (see function “LFDispVidCirc” in the LF
toolbox). To make this concrete, we plot the s, t lenslets
chosen by the LF toolbox function against the lenslets we
use by our rendering methods as shown in Fig. 5. Clearly, the
LF toolbox function is limited to choosing between 81 (9×9)
lenslets while we are free to choose any point in the s, t plane.



Fig. 5: Paths taken by the toolbox’s method and our method
overlaid on the s, t plane

(a) Spiral (b) Tornado

Fig. 6: Perspective paths.

Our methods are able to generate a smoother circular path as
proven by the generated (see GIF 4).

V. GIF MANIPULATION

A. Defining Perspective Path

Now that we have increased our degrees of freedom to go
in and out of and anywhere on the s, t plane, we are able to
follow any defined path to generate different effects. We have
generated two interesting paths as shown in Fig. 6. The first
path is a spiral path that goes in circles in the s, t plane starting
from small circles and ending at wider ones. The second path
we chose was a tornado path that goes in circles and in and
out of the s, t plane. An example for the spiral and tornado
paths can be found in GIF 5. We notice that there are some
aliasing effects at the end of the tornado path which are due
to the inaccuracy of our depth estimate.

B. Vertigo Effect

We were also able to perform the vertigo effect (a.k.a
dolly zoom) from the light field image. This was achieved
by adjusting the field of view as we go in and out of the s, t
plane. All of the GIFs provided in the attached folder have a
portion that shows the vertigo effect.

C. Fun Filters

In order to make the pictures more interesting, we can apply
filters to the images before we generate the GIFs. We have
tried only two filters here but other manipulations could be
easily applied. The first filter we used is a morphological one

(a) Morphological (b) Opacity

Fig. 7: Different filters applied to the images for fun visual-
izations.

as shown in Fig. 7a. The second filter changes the opacity of
the image as shown in Fig. 7b. These filters were randomly
generated by the authors by playing around with different
parameters (i.e. RGB channel scaling, dilation/erosion by
structural elements, etc.) until visually appealing images were
achieved.

VI. CONCLUSION AND FUTURE WORK

Light field camera typically have a sparse s, t plane that
includes a small number of lenslets. During this project,
we were able to produce virtual camera perspectives from
locations on the s, t, d that are not measured when the image is
captured. Three methods were tested. Texture mapping was the
simplest method but it gave us undesirable aliasing. Quadrilin-
ear interpolation fixed the aliasing effects but it did not capture
the right perspective of objects according to their depth. The
perspective issue was fixed by the last method, which is the
depth-corrected interpolation where we used a uniform depth
and a relative dense depth map estimate. The best results
were obtained using the relative depth-corrected interpolation.
Our results were validated against the LF toolbox function
“LFDispVidCirc” and showed much smoother views.

For future work, we recommend finding better estimates of
the depth map such that the rendering becomes even smoother.
Moreover, better rendering could potentially be achieved by
a patch-based approach, where the light field patches are
modeled using a Gaussian mixture model (GMM) [6]. Lastly,
if we wish to have these rendering techniques reach the
everyday consumers, then we need to make these algorithms
more computationally efficient.

ACKNOWLEDGMENT

The authors would like to thank Donald Dansereau for
his mentorship, feedback, and useful discussions during this
project. Also, we would like to thank the teaching staff:
Gordon Wetzstein, Jean-Baptiste Boin, and Hershed Tilak for
a very fun and enjoyable class.

LIST OF GIFS

All GIF files can be found in the GIFS folder. Instructions
on how to generate the GIFs and use different parameters is
outlined in the code’s README.pdf file.



1) GIF 1: Textural Mapping vs. 4D Interpolation
2) GIF 2: Constant Depth Comparison
3) GIF 3: Depth Map Consideration
4) GIF 4: Validation Circular Path
5) GIF 5: Spiral and Tornado
6) GIF 6: Image Filters and Effects

REFERENCES

[1] M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the
23rd annual conference on Computer graphics and interactive techniques.
ACM, 1996, pp. 31–42.

[2] D. Dansereau and L. Bruton, “Gradient-based depth estimation from 4d
light fields,” in Circuits and Systems, 2004. ISCAS’04. Proceedings of the
2004 International Symposium on, vol. 3. IEEE, 2004, pp. III–549.

[3] T.-C. Wang, A. Efros, and R. Ramamoorthi, “Occlusion-aware depth
estimation using light-field cameras,” in Proceedings of the IEEE Inter-
national Conference on Computer Vision (ICCV), 2015.

[4] R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan,
“Light field photography with a hand-held plenoptic camera,” Computer
Science Technical Report CSTR, vol. 2, no. 11, pp. 1–11, 2005.

[5] D. G. Dansereau, O. Pizarro, and S. B. Williams, “Decoding, calibration
and rectification for lenselet-based plenoptic cameras,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2013,
pp. 1027–1034.

[6] K. Mitra and A. Veeraraghavan, “Light field denoising, light field super-
resolution and stereo camera based refocussing using a gmm light field
patch prior,” in 2012 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops. IEEE, 2012, pp. 22–28.

APPENDIX A
WORK BREAKDOWN

• Light field data acquisition - Muhammad
• Textural and 4D interpolation - Kuy
• Depth-corrected interpolation - 50/50
• Validation - 50/50
• Paths - 50/50
• Filters - 50/50
• Final report and poster - 50/50


