
Occluded Edge Detection in Light Field Images for Background

Removal

Kevin C. Boyle

Department of Electrical Engineering

Stanford University

Stanford, CA

kcb76@stanford.edu

I. INTRODUCTION

Standard edge detection or foreground/background
separation techniques, such as Otzu’s method, require color or
intensity differences between the background and regions that
need to be separated. For example, green screens are routinely
set up as the background in a scene so that there is a clear
difference in color between the background and foreground. In
a standard 2D image of a scene with a green screen, digital
processing can be performed to label every pixel that matches
the green screen as part of the background and can be replaced
with a corresponding pixel in some other image to change the
background of the original image.

 Light field imaging aims to capture the complete 4D
description of an entire scene, as opposed to the 2D slice of the
light field that a standard camera captures. This 4D structure
contains depth information about the scene and an important
problem in light field research is creating a depth map from the
4D light field. The current state of the art in depth estimation
involves sophisticated optimization problems and iterative
algorithms. While many of these solutions produce accurate and
dense depth estimates then also require significant
computational resources [1].

 Consider the problem of separating the foreground from the
background to imitate the presence of a virtual green screen. A
good depth estimation in the scene could provide a metric to
separate the foreground and background: simply threshold the
depth map for the target green screen location and apply it to the
desired viewpoint. This simple technique relies on having an
excellent depth map for the whole image, and the corresponding
computational cost. Rather than invest all this effort in a good
depth map, we can also consider the edges from the pixel
intensities in one image and compare these to a more
rudimentary depth estimate. This allows foreground/background
segmentation across depths without computing a robust depth
map.

 In this project I implement a simple depth estimation
technique using 4D light field data and enhance the
foreground/background segmentation performance by
incorporating edges found with standard edge detection on the
center image of the light field. The end goal is to have a real-
time interactable depth segmentation tool for light field images
that users can use to perform qualitative virtual green screen
techniques. Ease of Use

II. DEPTH ESTIMATION FROM LIGHT FIELDS

The first step in the background removal task is to produce a
dense depth estimate from the light field. Throughout this report
the working 2D image that will eventually be displayed to the
user will be the center image of the light field, such as the one in
Fig. 1. That is, for the standard light field 4D representation
described in [2], the center view will be from the center of (s,t).

Previous work in the field describes how the orientation of
the plane passing through each light field sample is related to the
depth of light source at that point [2]. This orientation is related
to the 2D gradient in each of (s,u) and (t,v) planes. This thus
yields two gradient estimates for each color channel, for a total
of six estimates of the depth, each with a corresponding
confidence as measured by the magnitude of the gradient. The
poor confidence for most points limits the achievable density of
a depth map produced in this way. Flat, solid color surfaces with
no texture do not have large gradients, while textured edges do.
In order to produce a dense depth map, and combine the six
estimates across the two planes and three color channels, we can
weight the gradients as follows [3].

𝑃𝑧 =
∑𝜔𝑠𝑢𝑠𝑔𝑛(𝐿𝑠)𝐿𝑢 + ∑𝜔𝑡𝑣𝑠𝑔𝑛(𝐿𝑡)𝐿𝑣

∑𝜔𝑠𝑢||𝐿𝑠|| + ∑𝜔𝑡𝑣||𝐿𝑡||

Fig. 1. Central image from a light field of a lorikeet on a window ledge

overlooking a distant courtyard.

Here, Ls, Lu, Lt, and Lv refer to the gradient in the
corresponding direction and 𝜔𝑠𝑢 is a gaussian window. This
window incorporates neighboring gradient estimates to produce
a dense depth map with reasonable confidence values (note these
are captured in the denominators). I use a relatively large 10x10
gaussian window to ensure good density and rely on the detected
edges later to recover sharp lines around foreground/background
edges. Fig. 2 shows the depth estimate produced for the light
field with center image as shown in Fig. 1.

A. Calibration

The depth estimate we have constructed so far is not in actual
depth units, rather it is the slope of the gradient estimate, which
is proportional to the actual depth. For qualitative
foreground/background segmentation, we do not strictly need
the depth units, and can instead work with the slopes. If actual
depth units were required, the light field imager would need to
be calibrated, which is discussed in depth elsewhere [3].

III. FOREGROUND SEGMENTATION

Now that we have a depth map estimate to work with we
look to separate the foreground from the background and
substitute an image of our own onto the background.

A. Depth Threshold

As discussed earlier the simplest way to achieve this is to
simply threshold and binarize the depth map and use the result
as a mask to clip out the foreground from the center image.
However, with the gradient-slope algorithm we used to make the
depth estimate we require a small amount of additional
processing. It is easily seen in Fig. 2 that the depth map is not
uniform or varied enough for thresholding alone to work.

We nevertheless begin by thresholding according to a
qualitative user-selected gradient threshold and binarize the
pixels in the depth map that remain in front of this threshold as
in Fig. 3a. Due to the imperfect depth estimate we are using,
there are noisy background depth pixels and the foreground
edges are not necessarily fully filled and connected. In the
specific sample image we are using here there is also a dirty
window pane in the extreme foreground which may be
contributing to the noisy estimate, but these erroneous pixels
will in general be present regardless. This is easily overcome
with small region removal to remove all the small specks below
a threshold (about 20 pixels in this case) and a mild (3x3)
morphological closing operation to ensure the foreground edges
are connected, which results in Fig. 3b. All the bright (yellow)
pixels have been identified as foreground pixels, but these are
clustered mainly around the edges where there were sufficient
gradients in the light field for a high-confidence depth estimate.
In order to assign the remaining enclosed regions, we region
label and look at each individually. For each dark region we take
the mean of all the depth estimates for the corresponding pixels
and generate one average depth estimate for the whole region.
We then compare this to the selected threshold to determine if

Fig. 2. Depth map estimate of the light field from Fig. 1, where the

labelled value represents the slope of the gradient of the plane passing

through that light field sample.

(a) (b) (c)

Fig. 3. Steps in foreground segmentation after the thresholding operation: a) binarized pixels from the depth map above the threshold, b) small regions

removed and closing operation applied, c) region filling on areas identified as foreground.

the whole region is in the foreground or background and assign
the pixels accordingly. Specifically, we compare the average
depth estimate to 20% of the user-selected threshold, to account
for the lower gradients in regions without edges. This finally
leaves us with the binary mask in Fig. 3c that shows the pixel
locations of the foreground with respect to the center image.

The final step is to clip out the foreground pixels of the center
image and replace the background with an image of our
choosing. For more general performance across many images an
additional set of opening and eroding morphological operations
can be applied. In Fig. 4 we have done just that to successfully
put the first lorikeet on Mars. The whole thresholding operation
is carried out in real-time after the depth map is formed (this
only takes a few seconds up front) and is controlled with an
interactable GUI that sets the depth threshold used at the
beginning of the process.

This basic thresholding algorithm works well in many cases,
especially those with a large, distinct foreground area in front of
a distance background. In these cases the foreground pixels can
be aggressively thresholded, thus removing the background
entirely, and still leave enough information to close up the edges
in the foreground mask. However, this method is not sufficient
for cases such as that in Fig. 5 which has a much flatter
distribution of depths and many regions of low-confidence
estimates. Here, to select the whole window ledge and both birds
we must lower the threshold so far that the background scene
bleeds in. The next section improves upon the simple
thresholding to correct this.

B. Occluded Edge Detection

 To supplement the depth map estimate we look to the edges
in the center image that we are ultimately applying the
segmentation to. The edges from pixel intensities in this center
image (consider Fig. 5) should ultimately correspond to either
unoccluded edges, such as the coloring pattern on the lorikeet or
the texture on the brick wall, or to occluded edges, such as the
boundary between the bird and the distant driveway. Occluded
edges that exist above the desired threshold are exactly where
we want to segment the image, so we turn now to incorporating
these edges into our algorithm.

We begin again with the depth map estimate just as before,
which can be seen in Fig. 5, and threshold it according to a user-
selectable value. Then, we apply canny edge detection to the
grayscale center image, resulting in Fig. 6a. We are only
interested in the edges that can be considered to be in the
foreground so we remove any edge pixel that is not at least 20%

Fig. 4. Foreground mask applied to the center image from Fig. 1 and a

new image superimposed onto the background.

Fig. 5. (top row) center image of light field and the gradient-slope depth

estimate, (bottom row) failed foreground map produced by the threshold
only algorithm to segment the birds and windowsill from the background

below.

(a) (b) (c) (d)

Fig. 6. Intermediate steps in the edge detection algorithm, (a) canny edge detection on center image, (b) foreground edges that agree with the depth map, (c)

cleaned foreground edges to be filled to create mask, (d) masked foreground image segmenting the windowsill from the ground below.a

greater than the user selected threshold, again the 20% is to
account for edges that cross low-confidence depth estimate
regions without throwing them out too quickly. This gives us
foreground edges as in Fig. 6b, which we treat the same way we
did the detected foreground pixels from the previous section in
Fig. 3a. We continue on from here exactly as before, applying
region filling and morphological processing to create finished
edges as in Fig. 6c. This mask is then region labelled and
compared to the depth estimate to fill in the foreground regions
and can produce a final image as in Fig. 6d. This result is clearly
much improved over the simple thresholding from Fig. 5 and
generally works well in cases where the thresholding-only
method fails.

There are cases where the thresholding-only method is
superior, especially when the depth distribution is very binary
and there are lots of edges in the background. In these cases the
thresholding works reliably with the large difference in
foreground and background depth estimates, but the edge
detection is bound to find some small regions in the background
that appear to be foreground. The algorithm here, that looks at
the mean of the depth estimate in enclosed regions after
thresholding, weights these small noisy regions as more likely
to be foreground than larger regions and consequently fails.
Future improvements on the region-by-region foreground
probability estimates could alleviate this problem. Fig. 7 shows
an example where the edge detection method fails compared to
the thresholding-only method.

IV. CONCLUSIONS

The two depth segmentation algorithms discussed here both
run in real-time and allow the user to interactively segment the
image into background and foreground regions and substitute in
a new background image. These two methods work well in
complimentary cases and future work to improve the edge

detection method or fuse the two results of the two methods
could see substantial improvements. State of the art work on
depth estimation from light fields can generate significant
improvement in performance as well, but at the cost of greatly
increased computation time for the initial depth estimate. Some
depth estimation methods already include edge detection in the
center image [4].

ACKNOWLEDGMENT

This project made use of the Matlab Light Field Toolbox
v0.4 by Donald Dansereau. The toolbox has a number of useful
functions for loading and processing light field data from
commercial Lytro cameras and other datasets. The toolbox also
contains some sample light field data, such as the lorikeet photos
used in this report.

Additional light field datasets were taken from the Lytro
First Generation Dataset available online at
https://www.irisa.fr/temics/demos/lightField/index.html [5].

REFERENCES

[1] H.-G. Jeon, et al, “Accurate depth map estimation from a lenslet light field
camera,” IEEE Int. Conf. Computer Vision Pattern Recognition, 2015.

[2] D. Dansereau, and L. Bruton, “Gradient-based depth estimation from 4D
light fields,” in Proc. 2004 Int. Symp. Circuits Systems, 2004.

[3] D. Dansereau. “Plenoptic signal processing for robust vision in field
robotics,” Ph.D. dissertation, Sch. Aerospace, Mech., Mechatronic Eng.,
Univ. Sydney, Sydney, Australia, 2014.

[4] T.-C. Wang, et al, “Depth estimation with occlusion modeling using light-
field cameras,” IEEE Trans. Pattern Analysis Machine Intelligence, 2016.

[5] A. Mousnier, E. Vural and C. Guillemot, "Partial Light Field
Tomographic Reconstruction From a Fixed-Camera Focus Stack", IEEE
Trans. on Image Processing, submitted, 2015..

(a) (b) (c)

Fig. 7. Example of threshold-only versus edge detection performance in a specific case, (a) original input image, (b) threshold-only approach with a
background applied, (c) failed edge detection foreground mask created by low confidence in the foreground region and small edge-detected regions in the

background that are sensitive to the depth estimate noise.

https://www.irisa.fr/temics/demos/lightField/index.html

