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I. INTRODUCTION  

Standard edge detection or foreground/background 
separation techniques, such as Otzu’s method, require color or 
intensity differences between the background and regions that 
need to be separated. For example, green screens are routinely 
set up as the background in a scene so that there is a clear 
difference in color between the background and foreground. In 
a standard 2D image of a scene with a green screen, digital 
processing can be performed to label every pixel that matches 
the green screen as part of the background and can be replaced 
with a corresponding pixel in some other image to change the 
background of the original image. 

 Light field imaging aims to capture the complete 4D 
description of an entire scene, as opposed to the 2D slice of the 
light field that a standard camera captures. This 4D structure 
contains depth information about the scene and an important 
problem in light field research is creating a depth map from the 
4D light field. The current state of the art in depth estimation 
involves sophisticated optimization problems and iterative 
algorithms. While many of these solutions produce accurate and 
dense depth estimates then also require significant 
computational resources [1]. 

 Consider the problem of separating the foreground from the 
background to imitate the presence of a virtual green screen. A 
good depth estimation in the scene could provide a metric to 
separate the foreground and background: simply threshold the 
depth map for the target green screen location and apply it to the 
desired viewpoint. This simple technique relies on having an 
excellent depth map for the whole image, and the corresponding 
computational cost. Rather than invest all this effort in a good 
depth map, we can also consider the edges from the pixel 
intensities in one image and compare these to a more 
rudimentary depth estimate. This allows foreground/background 
segmentation across depths without computing a robust depth 
map. 

 In this project I implement a simple depth estimation 
technique using 4D light field data and enhance the 
foreground/background segmentation performance by 
incorporating edges found with standard edge detection on the 
center image of the light field. The end goal is to have a real-
time interactable depth segmentation tool for light field images 
that users can use to perform qualitative virtual green screen 
techniques. Ease of Use 

II. DEPTH ESTIMATION FROM LIGHT FIELDS 

The first step in the background removal task is to produce a 
dense depth estimate from the light field. Throughout this report 
the working 2D image that will eventually be displayed to the 
user will be the center image of the light field, such as the one in 
Fig. 1. That is, for the standard light field 4D representation 
described in [2], the center view will be from the center of (s,t). 

Previous work in the field describes how the orientation of 
the plane passing through each light field sample is related to the 
depth of light source at that point [2]. This orientation is related 
to the 2D gradient in each of (s,u) and (t,v) planes. This thus 
yields two gradient estimates for each color channel, for a total 
of six estimates of the depth, each with a corresponding 
confidence as measured by the magnitude of the gradient. The 
poor confidence for most points limits the achievable density of 
a depth map produced in this way. Flat, solid color surfaces with 
no texture do not have large gradients, while textured edges do. 
In order to produce a dense depth map, and combine the six 
estimates across the two planes and three color channels, we can 
weight the gradients as follows [3]. 

𝑃𝑧 =
∑𝜔𝑠𝑢𝑠𝑔𝑛(𝐿𝑠)𝐿𝑢 + ∑𝜔𝑡𝑣𝑠𝑔𝑛(𝐿𝑡)𝐿𝑣

∑𝜔𝑠𝑢||𝐿𝑠|| + ∑𝜔𝑡𝑣||𝐿𝑡||
 

 
Fig. 1. Central image from a light field of a lorikeet on a window ledge 

overlooking a distant courtyard. 



Here, Ls, Lu, Lt, and Lv refer to the gradient in the 
corresponding direction and 𝜔𝑠𝑢  is a gaussian window. This 
window incorporates neighboring gradient estimates to produce 
a dense depth map with reasonable confidence values (note these 
are captured in the denominators). I use a relatively large 10x10 
gaussian window to ensure good density and rely on the detected 
edges later to recover sharp lines around foreground/background 
edges. Fig. 2 shows the depth estimate produced for the light 
field with center image as shown in Fig. 1. 

A. Calibration 

The depth estimate we have constructed so far is not in actual 
depth units, rather it is the slope of the gradient estimate, which 
is proportional to the actual depth. For qualitative 
foreground/background segmentation, we do not strictly need 
the depth units, and can instead work with the slopes. If actual 
depth units were required, the light field imager would need to 
be calibrated, which is discussed in depth elsewhere [3]. 

III. FOREGROUND SEGMENTATION 

Now that we have a depth map estimate to work with we 
look to separate the foreground from the background and 
substitute an image of our own onto the background. 

A. Depth Threshold 

As discussed earlier the simplest way to achieve this is to 
simply threshold and binarize the depth map and use the result 
as a mask to clip out the foreground from the center image. 
However, with the gradient-slope algorithm we used to make the 
depth estimate we require a small amount of additional 
processing. It is easily seen in Fig. 2 that the depth map is not 
uniform or varied enough for thresholding alone to work. 

We nevertheless begin by thresholding according to a 
qualitative user-selected gradient threshold and binarize the 
pixels in the depth map that remain in front of this threshold as 
in Fig. 3a. Due to the imperfect depth estimate we are using, 
there are noisy background depth pixels and the foreground 
edges are not necessarily fully filled and connected. In the 
specific sample image we are using here there is also a dirty 
window pane in the extreme foreground which may be 
contributing to the noisy estimate, but these erroneous pixels 
will in general be present regardless. This is easily overcome 
with small region removal to remove all the small specks below 
a threshold (about 20 pixels in this case) and a mild (3x3) 
morphological closing operation to ensure the foreground edges 
are connected, which results in Fig. 3b. All the bright (yellow) 
pixels have been identified as foreground pixels, but these are 
clustered mainly around the edges where there were sufficient 
gradients in the light field for a high-confidence depth estimate. 
In order to assign the remaining enclosed regions, we region 
label and look at each individually. For each dark region we take 
the mean of all the depth estimates for the corresponding pixels 
and generate one average depth estimate for the whole region. 
We then compare this to the selected threshold to determine if 

 
Fig. 2. Depth map estimate of the light field from Fig. 1, where the 

labelled value represents the slope of the gradient of the plane passing 

through that light field sample. 

 
(a) (b)    (c) 

Fig. 3. Steps in foreground segmentation after the thresholding operation: a) binarized pixels from the depth map above the threshold, b) small regions 

removed and closing operation applied, c) region filling on areas identified as foreground. 



the whole region is in the foreground or background and assign 
the pixels accordingly. Specifically, we compare the average 
depth estimate to 20% of the user-selected threshold, to account 
for the lower gradients in regions without edges. This finally 
leaves us with the binary mask in Fig. 3c that shows the pixel 
locations of the foreground with respect to the center image. 

The final step is to clip out the foreground pixels of the center 
image and replace the background with an image of our 
choosing. For more general performance across many images an 
additional set of opening and eroding morphological operations 
can be applied. In Fig. 4 we have done just that to successfully 
put the first lorikeet on Mars. The whole thresholding operation 
is carried out in real-time after the depth map is formed (this 
only takes a few seconds up front) and is controlled with an 
interactable GUI that sets the depth threshold used at the 
beginning of the process.  

This basic thresholding algorithm works well in many cases, 
especially those with a large, distinct foreground area in front of 
a distance background. In these cases the foreground pixels can 
be aggressively thresholded, thus removing the background 
entirely, and still leave enough information to close up the edges 
in the foreground mask. However, this method is not sufficient 
for cases such as that in Fig. 5 which has a much flatter 
distribution of depths and many regions of low-confidence 
estimates. Here, to select the whole window ledge and both birds 
we must lower the threshold so far that the background scene 
bleeds in. The next section improves upon the simple 
thresholding to correct this. 

B. Occluded Edge Detection 

 To supplement the depth map estimate we look to the edges 
in the center image that we are ultimately applying the 
segmentation to. The edges from pixel intensities in this center 
image (consider Fig. 5) should ultimately correspond to either 
unoccluded edges, such as the coloring pattern on the lorikeet or 
the texture on the brick wall, or to occluded edges, such as the 
boundary between the bird and the distant driveway. Occluded 
edges that exist above the desired threshold are exactly where 
we want to segment the image, so we turn now to incorporating 
these edges into our algorithm. 

We begin again with the depth map estimate just as before, 
which can be seen in Fig. 5, and threshold it according to a user-
selectable value. Then, we apply canny edge detection to the 
grayscale center image, resulting in Fig. 6a. We are only 
interested in the edges that can be considered to be in the 
foreground so we remove any edge pixel that is not at least 20% 

 
Fig. 4. Foreground mask applied to the center image from Fig. 1 and a 

new image superimposed onto the background. 

   

 
Fig. 5. (top row) center image of light field and the gradient-slope depth 

estimate, (bottom row) failed foreground map produced by the threshold 
only algorithm to segment the birds and windowsill from the background 

below. 

    
(a) (b)    (c)   (d) 

Fig. 6. Intermediate steps in the edge detection algorithm, (a) canny edge detection on center image, (b) foreground edges that agree with the depth map, (c) 

cleaned foreground edges to be filled to create mask, (d) masked foreground image segmenting the windowsill from the ground below.a 



greater than the user selected threshold, again the 20% is to 
account for edges that cross low-confidence depth estimate 
regions without throwing them out too quickly. This gives us 
foreground edges as in Fig. 6b, which we treat the same way we 
did the detected foreground pixels from the previous section in 
Fig. 3a. We continue on from here exactly as before, applying 
region filling and morphological processing to create finished 
edges as in Fig. 6c. This mask is then region labelled and 
compared to the depth estimate to fill in the foreground regions 
and can produce a final image as in Fig. 6d. This result is clearly 
much improved over the simple thresholding from Fig. 5 and 
generally works well in cases where the thresholding-only 
method fails. 

There are cases where the thresholding-only method is 
superior, especially when the depth distribution is very binary 
and there are lots of edges in the background. In these cases the 
thresholding works reliably with the large difference in 
foreground and background depth estimates, but the edge 
detection is bound to find some small regions in the background 
that appear to be foreground. The algorithm here, that looks at 
the mean of the depth estimate in enclosed regions after 
thresholding, weights these small noisy regions as more likely 
to be foreground than larger regions and consequently fails. 
Future improvements on the region-by-region foreground 
probability estimates could alleviate this problem. Fig. 7 shows 
an example where the edge detection method fails compared to 
the thresholding-only method. 

IV. CONCLUSIONS 

The two depth segmentation algorithms discussed here both 
run in real-time and allow the user to interactively segment the 
image into background and foreground regions and substitute in 
a new background image. These two methods work well in 
complimentary cases and future work to improve the edge 

detection method or fuse the two results of the two methods 
could see substantial improvements. State of the art work on 
depth estimation from light fields can generate significant 
improvement in performance as well, but at the cost of greatly 
increased computation time for the initial depth estimate. Some 
depth estimation methods already include edge detection in the 
center image [4]. 
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(a) (b)           (c) 

Fig. 7. Example of threshold-only versus edge detection performance in a specific case, (a) original input image, (b) threshold-only approach with a 
background applied, (c) failed edge detection foreground mask created by low confidence in the foreground region and small edge-detected regions in the 

background that are sensitive to the depth estimate noise. 

https://www.irisa.fr/temics/demos/lightField/index.html

