
Artistic Rendering of Digital Images
Implementation of Texture Transfer Algorithm

Allison Card

Graduate School of Business

Stanford University

Stanford, CA

acard@stanford.edu

Abstract—Artistic rendering is a subset of non-photorealistic

rendering with the intention of using artistic effects in rendered

images. This paper looks at texture transfer as a generalized

method to render digital images in artistic styles. Texture transfer

algorithms transfer the source texture to a target image. Since

artistic style is subjective, this algorithm has four adjustable

parameters that allow a user to effect the style of the resulting

image. This paper also suggests some starting values for the

parameters that have been found to work best for most images.

Finally, texture transfer works well when the source texture has

high frequency components, is similar to target image, and has the

desired artistic style.

Keywords—image processing; non-photorealistic rendering;

artistic rendering; texture transfer; texture synthesis; image

quilting; drawing; painting

I. INTRODUCTION

Historically, Computer Graphics research has focused on
creating realist renderings of objects and scenes. This is called
photo realism. However, at the turn of the millennium a branch
of research was created focusing on rendering images with
stylistic effects like brush strokes and crosshatching [1]. This is
known as non-photorealistic rendering. Artistic rendering, a
subset of non-photorealistic rendering, allows for a greater range
of stylist presentations and dramatic effects and a greater ability
to focus the attention of the viewer [1]. In the modern day and
age, artist rendering can be used to turn everyday photos into
works of art.

While there are many different methods for artistic
rendering, most of them are specialized to a specific artistic
effect. For example, Hong and Liu developed an algorithm that
replicated the impressionist style of pointillism [2]. However,
the emphasis of this paper is on creating artistic rendering of all
types, so a texture transfer algorithm is used due to its generality.

Texture transfer algorithms take in an image to be used as
the source texture and a target image. The target image is
transformed in such a way as to replicate the high frequency
texture components of the source image, but still keep the
general shapes in the target image. This paper includes Section
II, discussing related work around texture transfer, Section III,
detailing the algorithm implemented, Section IV, showing
results, and Section V, discussing future considerations.

II. RELATED WORK

Hertzmann et. al. [5] and Efros and Freeman [6] were some
of the first to use texture synthesis algorithms to transfer an
artistic style to an image. Hertzmann et. al. used an image
analogy to train their program to replicate an artistic style. This
multiscale auto regression takes in A, A’, and B and returns B’,
where A:A’::B:B’. Efros and Freeman’s algorithm, on the other
hand, stitches together small pieces of the source texture to
create an image that looks similar to the target image. They refer
to this process as image quilting.

The difficulty with these algorithms is that they are quite
slow [3]. Creating the desired artistic effect may require many
iterations of the algorithm with a wide variety of parameters.
Ashikhmin developed a fast texture transfer algorithm which
performed significantly faster than these previous algorithms
[3]. He used a method called the coherent synthesis technique,
which examines a single pixel during the texture transfer process
[4] rather than looking at chunks of the image. Unlike
Hertzmann et. al., he does not need to train before the transfer
process, and unlike Efros and Freeman, he does not need to
consider such a large number of candidate tiles.

III. ALGORITHM

Fig. 1. Overview of algorithm.

This paper implements the fast texture transfer algorithm [3]
with some modifications. As seen in Fig. 1, there are three main
parts to this algorithm. The meat of the texture transfer process
and where most of the processing comes into play is step two.
This is the pixel by pixel coherent synthesis technique [4]. The
coherent synthesis technique is detailed in the first subsection to
facilitate better understanding of steps one and three. Detailed
next is the first step of the algorithm, setting up the initial output
such that the coherent synthesis technique can run smoothly.
The final part of the algorithm adds additional iterations to
eliminate harsh edges and allow the texture to converge.

Identify applicable sponsor/s here. If no sponsors, delete

this text box (sponsors).

A. Texture Transfer

This algorithm synthesizes texture from the source image in
a pixel by pixel process. The output array is first initialized (see
Section III. B.) and then the algorithm moves through the output
array in scanline order. For each pixel, there are five steps (also
pictured in Fig. 1):

 Generate candidate pixels.

 Add random candidate pixel with probability p.

 Remove duplicate candidates.

 Calculate neighborhood difference for all candidate
pixels.

 Save candidate pixel with smallest difference.

 The algorithm considers a n-by-n neighborhood surrounding
the current pixel to generate new candidate pixels. Fig. 2 shows
an example of this using a 3x3 neighborhood. The resulting
image contains the current pixel in black, 4 completed pixels in
the 3x3 neighborhood in blue, and 4 uncompleted pixels in the
3x3 neighborhood in white.

Fig. 2. Coherent synthesis technique. Diagram modified from [3]. Image

sources [1] and [2].

 The previously completed pixels are looked up in the source
image. The new candidate pixels are chosen based on the
location of the previous pixel in relation to the pixel currently
under consideration. Fig. 2 shows the previously chosen pixels
in the source image. The new candidate pixels are in black.

 Finding candidate pixels in this way allows the algorithm to
grow areas of texture in the resulting image. However, it can also
lead to harsh edges in the resulting image when the algorithm
runs into the boundaries of the source image or changes texture
areas. Therefore, a random candidate pixel from anywhere in the

source image is added to the candidate list. This reduces the size
of the texture growth areas allowing for smoother transitions. A
probability of 0.05 is generally sufficient to reduce these edge
effects [3], though greater probabilities may create superior
artistic effects.

 Since the algorithm chooses new pixels based on the location
of the pervious pixels in the source image. There will likely be
duplicate candidates in the candidate list. An example of this can
be seen in Fig. 2. To increase the speed of the algorithm,
duplicate candidates are removed. While this isn’t really
necessary when considering a neighborhood of 3x3, it becomes
much more necessary when considering larger neighborhoods as
the number of candidates grows quadratically.

 To find the neighborhood difference for every candidate
pixel, this paper used a similar algorithm to Ashikhmin’s [3]
with some changes. Ashikhmin kept the colors of the target
image in his algorithm, but the stylistic effects of using the
source colors, as Efros and Freeman [6] did, are preferable for
dramatic renditions of everyday photos. The neighborhood
difference is calculated using the difference in intensity between
the source and the target image and the L2 distance between the
completed portion of the resulting image and the L-shaped
neighborhood of the candidate pixel:

 D2 = w(Ns
̅̅ ̅-Nt

̅̅ ̅)2 + (1 n⁄)2L2(NrL, NsL) 

Ns refers to the neighborhood of the candidate pixel in the source
image, Nt refers to the neighborhood of the pixel under
consideration in the target image, and Nr refers to the
neighborhood of the candidate pixel in the resulting image. In
Fig. 2, the neighborhood size is 3x3, so 9 pixels are considered.
The average intensity value (indicated by the bar over Ns and Nt)
of this neighborhood is used such that no one pixel bears too
much weight. This allows the algorithm to pull textures with
large intensity variations into a section of the resulting image.
This part of the neighborhood difference is weighted with
parameter w. A value of one tends to work well for most use
cases [3]. However, it can be changed for different stylistic
effects.

 In the second half of (1), n refers to the number of pixels in
the L-shaped neighborhood (e.g., 4 in Fig. 2). This normalizes
the importance of the distance between the source and the result.
The L2 distance, the Euclidian distance between all rgb values,
is taken between the L-shaped neighborhood in the resulting
image and the L-shaped neighborhood in the source image. In
Fig. 2, these L-shaped neighborhoods are highlighted with a
pink boarder.

 When the candidate with the smallest neighborhood
difference is found, the pixel rgb values and the location in the
source image are stored and the algorithm moves on to the next
pixel in scanline order.

B. Initialization of Output

The coherent synthesis technique requires that an L-shaped
neighborhood of completed pixels be available for every new
pixel synthesized in the resulting image. Ashikhmin copies the
target image into the result and uses these values to compute the
candidate pixels and the neighborhood difference [3]. However,

this can create harsh edges in the resulting image especially
around the image boarder. To avoid this issue, create an extra
boarder of width N/2 around the resulting image. The pixels in
this boarder are randomly assigned from the source image. This
allows the first couple of pixels and edges of the resulting image
to be easily computed, see Fig. 3. For a 3x3 neighborhood, the
border width would be one pixel on three sides of the image.

Fig. 3. Initialization of output image.

C. Texture Convergence

While adding in random candidate pixels and initializing the
output image help reduce harsh edges in the resulting image,
these are not always sufficient. To ensure that the edges in the
image converge, the texture transfer portion of the algorithm can
be iterated over several times [4] [6]. The algorithm used in the
second plus iteration is mostly the same as that used in the first
iteration. However, there are changes to two steps detailed in
Section III. A.:

 Generate candidate pixels.

 Calculate neighborhood difference for all candidate
pixels.

 Instead of only looking at the previously completed pixels in
the L-shaped neighborhood to generate candidates, the
algorithm now generates candidates from the entire surrounding
neighborhood. Fig. 4 shows the second iteration over the
resulting image. The L-shaped neighborhood of resulting pixels
from the second iteration are used to generate candidate pixels,
and the bottom L-shaped neighborhood of resulting pixels from
the first iteration are also used to generate candidate pixels.

The neighborhood difference between the source and the
target remains the same. However, the L2 difference between
the resulting image and the source image now uses pixels from
the entire neighborhood:

 𝐷2 = 𝑤(𝑁𝑠
̅̅ ̅ − 𝑁𝑡

̅̅ ̅)2 + (1 𝑛⁄)2𝐿2(𝑁𝑟 , 𝑁𝑠) 

As seen above, (2) is very similar to (1). n now refers to the
number of pixels in the total neighborhood (e.g., 9 in Fig. 4)
instead of the L-shaped neighborhood.

Fig. 4. Texture convergence. The second iteration over the resulting image.

Diagram modified from [3]. Image sources [1] and [2].

IV. RESULTS

A. Parameters

There are four parameters the can be adjusted within this
algorithm:

 Neighborhood size (n).

 Probability of adding a new pixel (p).

 Weight on average intensity difference between the
source and target (w).

 Number of iterations (i).

The neighborhood size affects the ability of the algorithm to add
textures of varying frequencies to the resulting image. The
smaller the neighborhood the higher the texture frequency must
be. The neighborhood size also affects the convergence of the
resulting image as larger neighborhoods will provide a greater
number of candidate pixels to be considered. The effects of
neighborhood size can be seen in Fig. 5. A 5x5 neighborhood
seems to work well for most source images. The 3x3
neighborhood has too many sharp edges, and the 7x7 loses some
of the high frequency texture.

 The probability of adding a new pixel affects the smoothness
of the resulting image. Considering a random candidate pixel
causes smaller areas of texture growth. Higher probabilities
increase smoothness because the smaller texture areas fit
together better, but smaller texture areas mean fewer lower
frequency texture components in the resulting image. Fig. 5
shows the effects of different probabilities. A probability of 0.2
seems to work well for most images. The 0.05 probability causes
the resulting image to have too many sharp edges, while the

Fig. 5. Variation of output to parameters. Image sources [1] [2] [3].

resulting image with the 0.5 probability starts to lose the low
frequency texture components.

 The weight on the average intensity difference between the
source and the target affects the amount of detail from the target
image that is shown. The effects of the weight can be seen in
Fig. 5. A weight of 1 seems to work well for most images. The
0.5 weight causes the resulting image to appear blurry, while the
weight of 2 reduces the use of low frequency texture
components.

 Depending on the source image, the resulting image may
converge with only one iteration. However, some source
textures have different color components with similar
intensities. This causes obvious edges in the resulting image.
The number of iterations required to converge the image depend
greatly on both the source texture and the target image. In Fig.
5, it takes five iterations for the resulting image to converge,
though it has mostly converged by iteration 3.

B. Evaluation of Technique

 This algorithm works well for certain types and
combinations of source textures and target images. When the
intensity in the foreground/background of the source texture and
target image are similar, the resulting image contains similar
dramatic effects to the source. Fig. 6 (a) shows an example of
this. The algorithm also works when there are high frequency
texture components in the source texture. Fig. 6 (a) has small
line segments, and Fig. 6 (b) has small brush strokes. Finally,
the source texture should contain the artistic components desired
in the resulting image.

 The algorithm doesn’t work well for a number of source
textures and target image combinations. Smooth source textures
almost never work as the algorithm cannot pick up on such low

frequency changes. Source images that have both smooth and
high frequency components also don’t work well. Fig. 6 (c)
shows the discontinuities in the resulting image. While a larger
number of iterations will make this image look better, it is
impossible to fully remove these edges. Fig. 6 (c) also shows the
undesirability of strong directional lines in the source image.

 The resulting image will look best if the target image has
standard components of artistic style. For example, a single
strong light source, good composition, and a clear separation of
foreground and background. Fig. 6 (d) shows an example of this
problem. Finally, the algorithm doesn’t take into account the
types of objects in the image. For example, the resulting image
in Fig. 6 (b) doesn’t show the night sky in Starry Night as the
background as one might desire.

V. FUTURE CONSIDERATIONS

As mentioned in Section IV. B., there are a number of source
textures and resulting images where this algorithm doesn’t work
as well as desired. Further work on shapes [8] and directionality
of gradients [7] would help follow the lines in the target image.

Some preprocessing of the target image could enhance the
artistic qualities of the result. In particular, cropping the image
to create a better composition, sharpening the contrast of the
image to create the illusion of a stronger light source, and
blurring the background would likely improve the quality of the
result.

Finally, the resulting image would be much more interesting
if the objects in the source image could be aligned with the
objects in the target image. E.g., if there is sky in both images,
then the resulting image should have a sky similar to that of the
source image. Gatys, Ecker, and Bethge use neural networks to
create better symmetry between the source texture and resulting
image [9].

Fig. 6. Results. (a) Parameters: n=5x5, p=0.2, w=1, i=1. Image sources [1] [2].

(b) Parameters: n=5x5, p=0.2, w=1, i=5. Image sources [2] [3]. (c) Parameters:

n=5x5, p=0.2, w=1, i=1. Image sources [2] [4]. (d) Parameters: n=5x5, p=0.2,
w=1, i=1. Image sources [5] [6]. See Appendix for larger resulting images.

ACKNOWLEDGMENT

Thank you to Professor Gordon Wetzstein for providing
input and direction for this project.

REFERENCES

[1] J. Romero and P. Machado, "Evolutionary search for the artistic rendering
of photographs," in The Art of Artificial Evolution: A Handbook on
Evolutionary Art and Music. Berlin: Springer, 2008. 39-62.

[2] Y. Hong and T. Liu, “Create pointillism art from digital images,”
unpublished.

[3] M. Ashikhmin, "Fast texture transfer," in IEEE Computer Graphics and
Applications, vol. 23, no. 4, pp. 38-43, July-Aug. 2003.

[4] M. Ashikhmin, “Synthesizing natural textures,” in Proceedings of the
2001 symposium on Interactive 3D graphics (I3D '01). ACM, New York,
NY, USA, 217-226.

[5] A. Hertzmann, C. Jacobs, N. Oliver, B. Curless, and D. Salesin, “Image
analogies,” in Proceedings of the 28th annual conference on Computer
graphics and interactive techniques (SIGGRAPH '01). ACM, New York,
NY, USA, 327-340.

[6] A. Efros and W. Freeman, “Image quilting for texture synthesis and
transfer,” in Proceedings of the 28th annual conference on Computer
graphics and interactive techniques (SIGGRAPH '01). ACM, New York,
NY, USA, 341-346.

[7] H. Lee, S. Seo, S. Ryoo, and K. Yoon, “Directional texture transfer,”
in Proceedings of the 8th International Symposium on Non-Photorealistic
Animation and Rendering (NPAR '10). ACM, New York, NY, USA, 43-
48.

[8] T. Mertens, J. Kautz, J. Chen, P. Bekaert, and F. Durand, "Texture
Transfer Using Geometry Correlation," in Rendering Techniques 273.
2006.

[9] L. Gatys, A. Ecker, and M. Bethge., "A neural algorithm of artistic style,”
preprint. 2015.

IMAGE SOURCES

[1] Untitled by Enrico Donati. http://picclick.co.uk/Enrico-DONATI-
original-lithograph-381762876134.html

[2] Benedict Cumberbatch. http://www.bbcamerica.com/anglophenia/
2013/09/benedict-cumberbatch-as-an-actor-youre-looking-for-the-
infinite

[3] Starry Night by Vincent van Gogh. http://wallpaperswide.com/
the_starry_night-wallpapers.html

[4] After Rembrandt by BrokenUmbrella. http://brokenumbrella.deviantart.
com/art/After-Rembrandt-19437939

[5] Autumn Rhythm no 30 by Jackson Pollock. https://dimensionviva.
wordpress.com/tag/jackson-pollock/

[6] Unpublished

APPENDIX

Resulting image from Fig. 6 (a).

Resulting image from Fig. 6 (b).

Resulting image from Fig. 6 (c).

Resulting image from Fig. 6 (d).

	I. Introduction
	II. Related Work
	III. Algorithm
	A. Texture Transfer
	B. Initialization of Output
	C. Texture Convergence

	IV. Results
	A. Parameters
	B. Evaluation of Technique

	V. Future Considerations
	Acknowledgment
	References
	Image Sources
	Appendix

