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Abstract—Artistic rendering is a subset of non-photorealistic 

rendering with the intention of using artistic effects in rendered 

images. This paper looks at texture transfer as a generalized 

method to render digital images in artistic styles. Texture transfer 

algorithms transfer the source texture to a target image. Since 

artistic style is subjective, this algorithm has four adjustable 

parameters that allow a user to effect the style of the resulting 

image. This paper also suggests some starting values for the 

parameters that have been found to work best for most images. 

Finally, texture transfer works well when the source texture has 

high frequency components, is similar to target image, and has the 

desired artistic style.  
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I. INTRODUCTION 

Historically, Computer Graphics research has focused on 
creating realist renderings of objects and scenes. This is called 
photo realism. However, at the turn of the millennium a branch 
of research was created focusing on rendering images with 
stylistic effects like brush strokes and crosshatching [1]. This is 
known as non-photorealistic rendering. Artistic rendering, a 
subset of non-photorealistic rendering, allows for a greater range 
of stylist presentations and dramatic effects and a greater ability 
to focus the attention of the viewer [1]. In the modern day and 
age, artist rendering can be used to turn everyday photos into 
works of art. 

While there are many different methods for artistic 
rendering, most of them are specialized to a specific artistic 
effect. For example, Hong and Liu developed an algorithm that 
replicated the impressionist style of pointillism [2]. However, 
the emphasis of this paper is on creating artistic rendering of all 
types, so a texture transfer algorithm is used due to its generality.  

Texture transfer algorithms take in an image to be used as 
the source texture and a target image. The target image is 
transformed in such a way as to replicate the high frequency 
texture components of the source image, but still keep the 
general shapes in the target image. This paper includes Section 
II, discussing related work around texture transfer, Section III, 
detailing the algorithm implemented, Section IV, showing 
results, and Section V, discussing future considerations. 

II. RELATED WORK 

Hertzmann et. al. [5] and Efros and Freeman [6] were some 
of the first to use texture synthesis algorithms to transfer an 
artistic style to an image. Hertzmann et. al. used an image 
analogy to train their program to replicate an artistic style. This 
multiscale auto regression takes in A, A’, and B and returns B’, 
where A:A’::B:B’. Efros and Freeman’s algorithm, on the other 
hand, stitches together small pieces of the source texture to 
create an image that looks similar to the target image. They refer 
to this process as image quilting. 

The difficulty with these algorithms is that they are quite 
slow [3]. Creating the desired artistic effect may require many 
iterations of the algorithm with a wide variety of parameters. 
Ashikhmin developed a fast texture transfer algorithm which 
performed significantly faster than these previous algorithms 
[3]. He used a method called the coherent synthesis technique, 
which examines a single pixel during the texture transfer process 
[4] rather than looking at chunks of the image. Unlike 
Hertzmann et. al., he does not need to train before the transfer 
process, and unlike Efros and Freeman, he does not need to 
consider such a large number of candidate tiles. 

III. ALGORITHM 

 
Fig. 1. Overview of algorithm. 

This paper implements the fast texture transfer algorithm [3] 
with some modifications. As seen in Fig. 1, there are three main 
parts to this algorithm. The meat of the texture transfer process 
and where most of the processing comes into play is step two. 
This is the pixel by pixel coherent synthesis technique [4]. The 
coherent synthesis technique is detailed in the first subsection to 
facilitate better understanding of steps one and three. Detailed 
next is the first step of the algorithm, setting up the initial output 
such that the coherent synthesis technique can run smoothly. 
The final part of the algorithm adds additional iterations to 
eliminate harsh edges and allow the texture to converge. 
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A. Texture Transfer 

This algorithm synthesizes texture from the source image in 
a pixel by pixel process. The output array is first initialized (see 
Section III. B.) and then the algorithm moves through the output 
array in scanline order. For each pixel, there are five steps (also 
pictured in Fig. 1): 

 Generate candidate pixels. 

 Add random candidate pixel with probability p. 

 Remove duplicate candidates. 

 Calculate neighborhood difference for all candidate 
pixels. 

 Save candidate pixel with smallest difference. 

 The algorithm considers a n-by-n neighborhood surrounding 
the current pixel to generate new candidate pixels. Fig. 2 shows 
an example of this using a 3x3 neighborhood. The resulting 
image contains the current pixel in black, 4 completed pixels in 
the 3x3 neighborhood in blue, and 4 uncompleted pixels in the 
3x3 neighborhood in white. 

 
Fig. 2. Coherent synthesis technique. Diagram modified from [3]. Image 

sources [1] and [2]. 

 The previously completed pixels are looked up in the source 
image. The new candidate pixels are chosen based on the 
location of the previous pixel in relation to the pixel currently 
under consideration. Fig. 2 shows the previously chosen pixels 
in the source image. The new candidate pixels are in black. 

 Finding candidate pixels in this way allows the algorithm to 
grow areas of texture in the resulting image. However, it can also 
lead to harsh edges in the resulting image when the algorithm 
runs into the boundaries of the source image or changes texture 
areas. Therefore, a random candidate pixel from anywhere in the 

source image is added to the candidate list. This reduces the size 
of the texture growth areas allowing for smoother transitions. A 
probability of 0.05 is generally sufficient to reduce these edge 
effects [3], though greater probabilities may create superior 
artistic effects. 

 Since the algorithm chooses new pixels based on the location 
of the pervious pixels in the source image. There will likely be 
duplicate candidates in the candidate list. An example of this can 
be seen in Fig. 2. To increase the speed of the algorithm, 
duplicate candidates are removed. While this isn’t really 
necessary when considering a neighborhood of 3x3, it becomes 
much more necessary when considering larger neighborhoods as 
the number of candidates grows quadratically. 

 To find the neighborhood difference for every candidate 
pixel, this paper used a similar algorithm to Ashikhmin’s [3] 
with some changes. Ashikhmin kept the colors of the target 
image in his algorithm, but the stylistic effects of using the 
source colors, as Efros and Freeman [6] did, are preferable for 
dramatic renditions of everyday photos. The neighborhood 
difference is calculated using the difference in intensity between 
the source and the target image and the L2 distance between the 
completed portion of the resulting image and the L-shaped 
neighborhood of the candidate pixel: 

 D2 = w(Ns
̅̅ ̅-Nt

̅̅ ̅)2 + (1 n⁄ )2L2(NrL, NsL) 

Ns refers to the neighborhood of the candidate pixel in the source 
image, Nt refers to the neighborhood of the pixel under 
consideration in the target image, and Nr refers to the 
neighborhood of the candidate pixel in the resulting image. In 
Fig. 2, the neighborhood size is 3x3, so 9 pixels are considered. 
The average intensity value (indicated by the bar over Ns and Nt) 
of this neighborhood is used such that no one pixel bears too 
much weight. This allows the algorithm to pull textures with 
large intensity variations into a section of the resulting image. 
This part of the neighborhood difference is weighted with 
parameter w. A value of one tends to work well for most use 
cases [3]. However, it can be changed for different stylistic 
effects. 

 In the second half of (1), n refers to the number of pixels in 
the L-shaped neighborhood (e.g., 4 in Fig. 2). This normalizes 
the importance of the distance between the source and the result. 
The L2 distance, the Euclidian distance between all rgb values, 
is taken between the L-shaped neighborhood in the resulting 
image and the L-shaped neighborhood in the source image. In 
Fig. 2, these L-shaped neighborhoods are highlighted with a 
pink boarder. 

 When the candidate with the smallest neighborhood 
difference is found, the pixel rgb values and the location in the 
source image are stored and the algorithm moves on to the next 
pixel in scanline order. 

B. Initialization of Output 

The coherent synthesis technique requires that an L-shaped 
neighborhood of completed pixels be available for every new 
pixel synthesized in the resulting image. Ashikhmin copies the 
target image into the result and uses these values to compute the 
candidate pixels and the neighborhood difference [3]. However, 



this can create harsh edges in the resulting image especially 
around the image boarder. To avoid this issue, create an extra 
boarder of width N/2 around the resulting image. The pixels in 
this boarder are randomly assigned from the source image. This 
allows the first couple of pixels and edges of the resulting image 
to be easily computed, see Fig. 3. For a 3x3 neighborhood, the 
border width would be one pixel on three sides of the image. 

 
Fig. 3. Initialization of output image.  

C. Texture Convergence 

While adding in random candidate pixels and initializing the 
output image help reduce harsh edges in the resulting image, 
these are not always sufficient. To ensure that the edges in the 
image converge, the texture transfer portion of the algorithm can 
be iterated over several times [4] [6]. The algorithm used in the 
second plus iteration is mostly the same as that used in the first 
iteration. However, there are changes to two steps detailed in 
Section III. A.: 

 Generate candidate pixels. 

 Calculate neighborhood difference for all candidate 
pixels. 

 Instead of only looking at the previously completed pixels in 
the L-shaped neighborhood to generate candidates, the 
algorithm now generates candidates from the entire surrounding 
neighborhood. Fig. 4 shows the second iteration over the 
resulting image. The L-shaped neighborhood of resulting pixels 
from the second iteration are used to generate candidate pixels, 
and the bottom L-shaped neighborhood of resulting pixels from 
the first iteration are also used to generate candidate pixels. 

The neighborhood difference between the source and the 
target remains the same. However, the L2 difference between 
the resulting image and the source image now uses pixels from 
the entire neighborhood: 

 𝐷2 = 𝑤(𝑁𝑠
̅̅ ̅ − 𝑁𝑡

̅̅ ̅)2 + (1 𝑛⁄ )2𝐿2(𝑁𝑟 , 𝑁𝑠) 

As seen above, (2) is very similar to (1). n now refers to the 
number of pixels in the total neighborhood (e.g., 9 in Fig. 4) 
instead of the L-shaped neighborhood.  

 
Fig. 4. Texture convergence. The second iteration over the resulting image. 

Diagram modified from [3]. Image sources [1] and [2]. 

IV. RESULTS 

A. Parameters 

There are four parameters the can be adjusted within this 
algorithm: 

 Neighborhood size (n). 

 Probability of adding a new pixel (p). 

 Weight on average intensity difference between the 
source and target (w). 

 Number of iterations (i). 

The neighborhood size affects the ability of the algorithm to add 
textures of varying frequencies to the resulting image. The 
smaller the neighborhood the higher the texture frequency must 
be. The neighborhood size also affects the convergence of the 
resulting image as larger neighborhoods will provide a greater 
number of candidate pixels to be considered. The effects of 
neighborhood size can be seen in Fig. 5. A 5x5 neighborhood 
seems to work well for most source images. The 3x3 
neighborhood has too many sharp edges, and the 7x7 loses some 
of the high frequency texture. 

 The probability of adding a new pixel affects the smoothness 
of the resulting image. Considering a random candidate pixel 
causes smaller areas of texture growth. Higher probabilities 
increase smoothness because the smaller texture areas fit 
together better, but smaller texture areas mean fewer lower 
frequency texture components in the resulting image. Fig. 5 
shows the effects of different probabilities. A probability of 0.2 
seems to work well for most images. The 0.05 probability causes 
the resulting image to have too many sharp edges, while the  

 



Fig. 5.  Variation of output to parameters. Image sources [1] [2] [3]. 

resulting image with the 0.5 probability starts to lose the low 
frequency texture components. 

 The weight on the average intensity difference between the 
source and the target affects the amount of detail from the target 
image that is shown. The effects of the weight can be seen in 
Fig. 5. A weight of 1 seems to work well for most images. The 
0.5 weight causes the resulting image to appear blurry, while the 
weight of 2 reduces the use of low frequency texture 
components. 

 Depending on the source image, the resulting image may 
converge with only one iteration. However, some source 
textures have different color components with similar 
intensities. This causes obvious edges in the resulting image. 
The number of iterations required to converge the image depend 
greatly on both the source texture and the target image. In Fig. 
5, it takes five iterations for the resulting image to converge, 
though it has mostly converged by iteration 3. 

B. Evaluation of Technique 

 This algorithm works well for certain types and 
combinations of source textures and target images. When the 
intensity in the foreground/background of the source texture and 
target image are similar, the resulting image contains similar 
dramatic effects to the source. Fig. 6 (a) shows an example of 
this. The algorithm also works when there are high frequency 
texture components in the source texture. Fig. 6 (a) has small 
line segments, and Fig. 6 (b) has small brush strokes. Finally, 
the source texture should contain the artistic components desired 
in the resulting image. 

 The algorithm doesn’t work well for a number of source 
textures and target image combinations. Smooth source textures 
almost never work as the algorithm cannot pick up on such low 

frequency changes. Source images that have both smooth and 
high frequency components also don’t work well. Fig. 6 (c) 
shows the discontinuities in the resulting image. While a larger 
number of iterations will make this image look better, it is 
impossible to fully remove these edges. Fig. 6 (c) also shows the 
undesirability of strong directional lines in the source image.  

 The resulting image will look best if the target image has 
standard components of artistic style. For example, a single 
strong light source, good composition, and a clear separation of 
foreground and background. Fig. 6 (d) shows an example of this 
problem. Finally, the algorithm doesn’t take into account the 
types of objects in the image. For example, the resulting image 
in Fig. 6 (b) doesn’t show the night sky in Starry Night as the 
background as one might desire. 

V. FUTURE CONSIDERATIONS 

As mentioned in Section IV. B., there are a number of source 
textures and resulting images where this algorithm doesn’t work 
as well as desired. Further work on shapes [8] and directionality 
of gradients [7] would help follow the lines in the target image. 

Some preprocessing of the target image could enhance the 
artistic qualities of the result. In particular, cropping the image 
to create a better composition, sharpening the contrast of the 
image to create the illusion of a stronger light source, and 
blurring the background would likely improve the quality of the 
result. 

Finally, the resulting image would be much more interesting 
if the objects in the source image could be aligned with the 
objects in the target image. E.g., if there is sky in both images, 
then the resulting image should have a sky similar to that of the 
source image. Gatys, Ecker, and Bethge use neural networks to 
create better symmetry between the source texture and resulting 
image [9]. 



 

 

Fig. 6. Results. (a) Parameters: n=5x5, p=0.2, w=1, i=1. Image sources [1] [2]. 

(b) Parameters: n=5x5, p=0.2, w=1, i=5. Image sources [2] [3]. (c) Parameters: 

n=5x5, p=0.2, w=1, i=1. Image sources [2] [4]. (d) Parameters: n=5x5, p=0.2, 
w=1, i=1. Image sources [5] [6]. See Appendix for larger resulting images.  
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APPENDIX 

 
Resulting image from Fig. 6 (a). 

 

 
Resulting image from Fig. 6 (b). 

 



 
Resulting image from Fig. 6 (c). 

 

 
Resulting image from Fig. 6 (d). 
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