Instant Camera Translation and Voicing for Signs

Kaifeng Chen
Department of Applied Physics
Stanford University
Stanford, California 94305
Email:kfchen @stanford.edu

Abstract—Optical Character Recognition (OCR) is a class
of problems that converts images or handwritten texts to
machine-encoded text. In this project, we focus on one aspect
of the general OCR problems and apply image processing
techniques to sign image recognition for people who are not
familiar with English. We incorporate four different kinds
of algorithms that either handle the input image at text
level or image level, and build a neat and useful Android
application to facilitate instant English-to-Chinese translation
and voicing. Such application has the advantage of in-phone
computation, and thus saves the trouble of the communication
with the servers. In addition, we perform detailed analysis
on the algorithms and compare them under different cases.
The statistical aspects concerning the accuracy, robustness and
speed of each algorithm are presented.

1. Introduction

In this project, we develop an Android application that
can translate signs from English to Chinese or other foreign
languages with autovoicing. In our application, the trans-
lation of the signs can be immediately performed by first
placing the sign in the camera and then pressing the search
button. This application can be used for sign recognition
at airports or on road, which helps foreigners to guide and
enjoy themselves when traveling in the states without the
hassle of opening a digital dictionary and typing in the text,
and thus saving the trouble of making mistakes such as input
typos. These functionalities can also be generalized poten-
tially to cover guide translation at tourist attractions, menu
translation at a restaurant, and text translation when reading
a book. In addition, we implement all the computation in the
cell phone using different commercial packages and saves
the trouble of server communication.

Our task is in the traditional domain of optical character
recognition (OCR) which converts “images of typed, hand-
written or printed text into machine-encoded text, whether
from a scanned document, a photo of a document, a scene-
photo (for example the text on signs and billboards in a
landscape photo) or from subtitle text superimposed on
an image (for example from a television broadcast)”. A
survey of this area can be found in [1]] and a very classical

Yao Zhou
Department of Material Science Engineering
Stanford University
Stanford, California 94305
Email:yaozhou@stanford.edu

Shanshan Xu
Department of Physics
Stanford University
Stanford, California 94305

Email:xuss @stanford.edu

example is the handwritten digits recognition [2]. As a
mature area, there has been a lot of available OCR software
packages such as the Tesseract OCR engine [3]. On the
other hand, compared to the general side of OCR, our task
is in a relatively narrow subfield. Typical OCR processes the
text either character by character or word by word. In our
case, since the signs are pretty uniform and have limited
kinds, we can process signs at the image level. Our task
is more specifically related to the problem of traffic sign
recognition [4] or the sign road recognition [1]]. There are
great interests and efforts in studying relevant algorithms
and techniques for such problems due to the recent rise of
self-driving car research.

The report is organized as follows. In Section [2] and
Section |3 we briefly review the four algorithms used in our
application and their implementations, respectively. Our re-
sults are summarized in Section[d] We test the performances
of the four algorithm both in accuracy and speed. Finally,
we point out the future work in Section [3]

2. Algorithm

We provide the following four algorithms for sign recog-
nition: Google Mobile Services (GMS), Maximally stable
extremal regions (MSER) and GMS, Sirovich and Kirby
Algorithm, Features from Accelerated Segment Test (FAST)
detector and Oriented FAST and Rotated Binary Robust
Independent Elementary Features (BRIEF) (ORB) matching.
The final translation is done by using the database that con-
tains a hash map between English text and the corresponding
Chinese translation.

2.1. GMS

GMS Text Recognition [5] is an algorithm designed for
OCR detection problems. It is generally utilized to detect
text in images or video streams and recognize the text
contained in them. Once the text block is detected, the
recognizer then determines the actual text in each block
and segments it into lines and words, as shown in Fig. 1| [S].
The Text API detects text in Latin based languages (French,
German, English, etc.), in real-time, on device.

Blocks

Lines

Lines

Words Words Words Words

Figure 1. GMS: Text Structure

2.2. MSER and GMS

MSER and GMS Text Recognition is also an algorithm
designed for OCR detection problems. MSER [6] are used
as a method of blob detection in images. The key idea
of MSER is to choose thresholds such that the resulting
bright (or dark) extremal regions are nearly constant when
these thresholds are perturbed by a small amount. In this
algorithm, we first use MSER to detect text blocks and then
use GMS to recognize the text contained in the blocks.

2.3. Sirovich and Kirby algorithm

Sirovich and Kirby algorithm is also an algorithm de-
signed for image detection problems. The use of Sirovich
and Kirby algorithm requires a database. The approach of
using eigenfaces for recognition was developed by Sirovich
and Kirby and was used in face classifications [[7]. Here,
we apply the Sirovich and Kirby algorithm to text im-
age recognition. The eigenvectors are derived from the
covariance matrix of the probability distribution over the
high-dimensional vector space of the database images. The
eigenfaces themselves form a basis set of all images used
to construct the covariance matrix. This produces dimension
reduction by allowing the smaller set of basis images to rep-
resent the database images. Classification can be achieved
by comparing images represented by the basis set. We use
cosine similarity to match images.

2.4. FAST Feature Detector

FAST detector and ORB matching is also an algorithm
designed for image detection problems. The use of FAST
detector and ORB matching also requires a database. There

Figure 2. FAST detector

are several feature detectors, including SIFT, SURF. Al-
though they perform very well in terms of feature detection,
they are not fast enough in real-time application for our
need. FAST was proposed as a solution to this in 2006 [8]:
Compare “nucleus” p to circle of sixteen pixels, as shown
in Fig. 2] [9]. Nucleus is feature point, if at least n = 9
contiguous circle pixels are either all brighter, or all darker,
by t. Optimize pixel comparisons to reject non-corners early.
We use OpenCV functionalities for FAST algorithm [10].

3. Implementation

Algorithm 1 which utilizes GMS directly is implemented
in the following way shown in Fig. 3] In fact, to facilitate

Google text =) text in the image

Recognizer

Figure 3. Pipeline of the implementation of algorithm 1: GMS.

the in-phone calculation, we resize the input image with less
pixels before directly using GMS.

The algorithm 2 is implemented as shown in Fig.]
Here again we resize the input image. The additional MSER

Google text . .
—) ‘ —) Recognizer) text in the image

Figure 4. Pipeline of algorithm 2: MSER and GMS

feature detector can help text block detection, and thus filter
out some of the undesired unrelated texts.

The algorithm 3 is implemented as shown in Fig. [3]
Here, the Sirovich and Kirby algorithm of algorithm 3 is
implemented in detail as the following:

1. Vectorize the database images I'y,I's,...I'r. Each
column vector represents one image. (Here, L = 13)

2. Define the database image matrix S =
(T'1,0g,...,Tp).

3. Calculate the eigenvectors v; of S7S.

Pre-collected images

——

vectorize

oo | =t |

gray

vectorize

Operator

Database

Matched image and
the associated text

Cosine

Representations in the
eigen-image space

similarity

Figure 5. Pipeline of algorithm 3: Sirovich and Kirby Algorithm

Pre-collected images

image 1

Database

=

N

image 2

I —
. L

Feature Matched image and

—

image L

-1

—— —

sign image

feature descriptors

—)=—

Matching the associated text

Figure 6. Pipeline of algorithm 4: FAST detector and ORB matching

4. Calculate eigenimages as w; = Sv;. (normalized)

5. For an input camera frame 7', compute the projection
on the eigenvectors u; = Tv;.

6. Compute the cosine similarity between w; and all
w; and output the result associated with the largest
similarity. The cosine similarity here is defined as

T
u; v;

cosfu vi) = L il

ey

The algorithm 4 is implemented as shown in Fig. [
The choice of using FAST feature detector is to improve
the speed of feature extraction, and thus meets the needs of
in-phone high-speed computation.

4. Results

In this section, we implemented the four algorithms
introduced above using the procedures explained in the last
section. The following paragraphs are organized as follows:
in section 4.1, we discuss the data based we used for
algorithms 3 and 4. In section .2} by using the application
on different sizes of images, we compare the accuracy of the
four algorithms. In section 4.3] we give an example showing
the robustness of the application. In section .4 we evaluate
the speed of the four algorithms.

Figure 7. (left) the raw image downloaded from the web and (right) the
images after adding white padding. The outlines for the images are labeled
using green dashed lines. The final image has the ratio of 16 : 9, which is
the same ratio as the cell phone screen.

4.1. Database

We use a preselected database for the implementation of
PCA algorithm (algorithm 3) and FAST feature detector al-
gorithm (algorithm 4). The original images are downloaded
from the web. To ensure a fair comparison between the
database images and the input frame from the Camera, we
first process the raw images so that the ratio of the image
is exactly the same as the camera screen. For Nexus 6P, its
screen ratio is 16 : 9. Therefore, we pad the images with
white pixels such that the database that is finally employed
has the same width-height ratio. Fig. [7)is an example of how

to do the while pixel padding for the sign “arrival”.
Here for simplicity, we pick 13 most representative
sign images as the database. These signs include “arrival”,

39 <

“departure”, “exit”,“entrance”, “stop”, “baggage”, “check
in”, “information”, “lost & found”, “money exchange”, “re-
stroom”, “security” and “custom”. We apply the steps de-
scribed above on the images and store them as the database.
In initializing the application, the computations that are
related to the database are then conducted and stored so
that the eigenvalues and descriptors of the database images
do not need to computed again. This significantly improves
the speed of the application.

4.2. Accuracy

In this section, we focus on the discussion of the accu-
racy of these algorithms, and the working range of the algo-
rithms. To conduct the comparison, we use the application to
recognize the given image sign when the camera of the cell
phone and the image are placed at three different distances.
The closest distance, which corresponds to the case that the
sign fills the whole camera screen, is denoted as 1x. Then as
the camera is moving away from the sign, the sign becomes
smaller in the camera frame and in those cases we denote it
as nx where n > 1 and represents the approximated ratio
between the camera frame and the captured image size. Here
we only conducted experiments for three different sets of
ratios 1x, 3x and 5X.

The results for algorithm 1 — 4 for the cases of 1x and
3x are shown as follows in Fig. We can clearly see
that, for the case of 1x, where the input images almost
exactly matches the screen size, the algorithms 3 and 4
work the best. Where for algorithms 1 and 2, no text is
recognized. This is because for PCA and FAST feature
detector algorithm, the accuracy of them is significantly
improved when the input image is close to the stored image
in the database, whereas algorithms 1 and 2, which are based
on Google Mobile Service, are not application to signs with
large fonts that are comparable to the size of the screen.

On this other hand, when the images are far from the
cell phone camera, for example 3x, the algorithms 1 and
2 outperform algorithms 3 and 4. As can be seen from the
four figures, algorithms 1 and 2 give the right results, while
the outputs from algorithms 3 and 4 are incorrect. This
agrees with the observation in the case of 1x since correct
recognition from algorithms 3 and 4 really require an input
image that resembles one of the database image.

In addition to the experiment for the case of 3x, we
also compare the algorithms for 5x and the results are
summarized in Fig. E} From the table, we conclude that
algorithms 1 and 2 are more limited to the case when the
sign has small font (or the sign image itself is small), while
image can exactly fit the screen, the algorithms 3 and 4
performs much better. In summary, here the four algorithms
actually cover most of the cases in real applications where
the view angle of the user actually affects the output of the
text recognition, and having four algorithms built in a single

@Oacor Oncor (awos ()acos

Oaeor ©aweo2 (Haweos (DaGos =

Oasor

Doz ©aweos O

iz

~ 0
p Ohcer Oucr Oaces @I

Figure 8. (left) the result at 1x and (right) the result at 3x. The ith row
represents the result from the 4th algorithm.

Oawor Oacoz (Dawos (OaLso

Algo 1 X v v
Algo2 X 4 4
Algo3 ¢/ X b 4
Algo4 X X

Figure 9. The correctness of the four algorithms for the cases of 1x, 3x
and 5 X, respectively

application avoid wrong detections in the two extreme cases
and thus can be used in a broad range of scenarios.

4.3. Robustness

In terms of robustness for the four algorithms, the algo-
rithms 1, 2, and 4 are more robust to angle rotation due to the
nature of the underlying algorithms. To get accurate result
from algorithm 3, one needs to use signs with different styles
as the database such that the eigenvectors of the database
images are totally different. In the case of an input image
that does not even exist in the database, algorithm 3 and
4 will give the wrong answer. To avoid that problem, one
can set a threshold cosine similarity for algorithm 3 and
minimum number of matched features for algorithm 4. Then

L et
ST T <
-W%Wﬂ?'.“.
S <

Figure 10. the outputs of algorithm 1 in different view angles.

when the image has cosine similarity or the matched features
less than the threshold, the algorithms can output empty
translation.

Fig. |10 is an example of algorithm 1 on different view
angles. We can see that algorithm 1 is pretty robust against
x axis rotation, but not stable in y axis rotation. However in
general, the robustness improved by preprocessing the input
frame using Hough transform.

4.4. Speed
speed time (ms)
algorithm 1 355
algorithm 2 4935

algorithm 3 29
algorithm 4 1656

TABLE 1. SPEED OF EACH ALGORITHM.

In this section, we compare the speed of the four algo-
rithms when each of them is operated at the best working
range, as is shown in the last section. Here we pick “depar-
ture” sign as the example. The run time for each algorithm
is averaged. The results are summarized in table. [T}

The above table is visualized in Fig. [IT] We can clearly
see that algorithm 3 perform the best in terms of speed
because of the significant deduction of image dimension.
As a contrast, algorithm 2 perform the slowest because of
the MSER detector. It turns out that algorithms 1 and 4
actually have large variations of run time depending on the
complexity of the input frame. This might come from from
the fact that the computation of the text blocks (algorithm 1)

Run time (ms)
Algo1l N
Algo2 I
Algo3 |
Algo 4 N

0 2000
B Run time (ms)

4000 6000

Figure 11. The run time (ms) for each algorithm at the best working range.

or feature descriptors (algorithm 4) scales up when the input
image becomes more complicated, i.e. has more details or
more other texts.

5. Future work

In additional to directly using Google mobile service for
optical character recognition, we provide two ways to extract
image features for image matching. One is the Sirovich and
Kirby algorithm, where we decompose pre-collected images
into eigen-images and represent each image as the projection
coefficients in the eigen-image space. The other one is
the FAST algorithm which outputs the feature descriptors
directly.

A future extension is to apply the deep learning tech-
niques such as the convolutional neural networks (CNN)
[L1] for image or text recognition. In our problem, since
the number of distinct signs are limited and their fonts are

almost fixed, we can collect all the kinds of signs in advance.
The image to be matched is then expected to be similar to
one of the collected signs but may differ in size, rotation
and homography. As a result, to train a neural network,
we can generate massive artificial sign images by applying
homography transformations to the collected sign images.
A more aggressive way is to train a neural network to
recognize the English characters in the sign images directly,
which can recognize signs that are beyond the collected
signs. For this purpose, a more advanced application with
built-in deep learning algorithms needs to be implemented
for mobile devices. Due to the high computation require-
ments of training a neural net, one can also build severs
that interact with the mobile application. We believe that
with these approaches, the results will be further improved.

Acknowledgments

The authors would like to thank the EE 368 TA Jean-
Baptiste Boin and professor Gordon Wetzstein for the guid-
ance of the project. The source code of the project can be
found in this Github repository [12].

References

[1] G. Piccioli, E. De Micheli, P. Parodi, M. Campani, Robust method for
road sign detection and recognition, Image and Vision Computing, 14
(3) 209-223, 1996.

[2] larchive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits

[3] R. Smith. An overview of the Tesseract OCR engine. 2007.

[4] A. de la Escalera, J.M Armingol, M. Mata, Traffic sign recognition
and analysis for intelligent vehicles, Image and Vision Computing, 21
(3) 247-258, 2003.

[5] https://developers.google.com/vision/text-overview

[6] J. Matas, O. Chum, M. Urban, and T. Pajdla, Robust wide baseline
stereo from maximally stable extremal regions, Proc. of British Ma-
chine Vision Conference, 384-396, 2002.

[7]1 L. Sirovich; M. Kirby, Low-dimensional procedure for the character-
ization of human faces, Journal of the Optical Society of America A,
4 (3) 519-524, 1987.

[8] E. Rosten and T. Drummond, Machine learning for high speed corner
detection in 9th European Conference on Computer Vision, (1), 430-
443, 2006.

[9] E. Rublee, V. Rabaud, K. Konolige, G. R. Bradski, ORB: An efficient
alternative to SIFT or SURF, ICCV 2564-2571, 2011.

[10] |OpenCV FAST tutorial

[11] Alex Krizhevsky and Sutskever, Ilya and Hinton, Geoffrey E, Ima-
geNet Classification with Deep Convolutional Neural Networks, Ad-
vances in Neural Information Processing Systems 25, 1097-1105, 2012.

[12] 'https://github.com/kfrancischen/cameraTranslation

http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://developers.google.com/vision/text-overview
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_fast/py_fast.html
https://github.com/kfrancischen/cameraTranslation

	Introduction
	Algorithm
	GMS
	MSER and GMS
	Sirovich and Kirby algorithm
	FAST Feature Detector

	Implementation
	Results
	Database
	Accuracy
	Robustness
	Speed

	Future work
	References

