Video Reconstruction from Randomized Video
Frames

Ned Danyliw
Electrical Engineering
Stanford University
Stanford, CA
Email: edanyliw @stanford.edu

Abstract—In certain scientific experiments there is a need to
combine sequences of captured static images to reconstruct the
dynamics of a system and observe how the system behaves over
time. In the case of extracting protein dynamics from many
samples, each of which is destroyed after measurement, this
is equivalent to reordering a video whose frames have been
randomly shuffled. The algorithm proposed uses feature based
matching to determine the distance between frames and proposes
two sorting algorithms for reordering the frames given the
calculated distance metrics. Using these methods, the algorithm
achieves good reconstruction of 2D videos.

I. INTRODUCTION

The world around us is constantly in motion and evolving.
However when this motion occurs at the smallest scale it is
often impossible for researchers to observe. In order to suc-
cessfully image a system, the sensor needs to capture enough
light to fully expose the image fast enough to capture the
dynamics of the system. In the case of imaging proteins, like
work being done at SLAC National Accelerator Laboratories
[1], capturing images requires so much energy that the sample
is destroyed in the process. This prevents scientists from
capturing any of the dynamics information of proteins such as
how they transform between conformations. If many images
of the samples are captured, the problem can be viewed as
a video reconstruction problem where the frames have been
randomly reordered (subject to rotations and repeated frames).

This paper looks at the video reconstruction problem, fo-
cusing on the 2D case, with the aim to develop an algorithm
that can be generalized to the 3D problem outlined above.
The problem was split into two main components - calculating
the “distance” between frames to assign likelihoods of frames
being adjacent and sorting the frames given these distance
metrics. By splitting the algorithm into these two subcompo-
nents, it allows the sorting algorithm to be applied to any set
of distance metrics that may be calculated, including distance
metrics from the 3D case.

II. RELATED WORK

Reconstructing video from frames that have been randomly
shuffled is not a widely researched area. The applications are
primarily centered around academic or research communities
like those imaging proteins at SLAC. A method that has
been gaining traction in the research community has been
the Isomap technique proposed by Abbas Ourmazd et al.

[2]. This method is a graph-based approach that reconstructs
the sequence through a nearest neighbors algorithm after
reducing the dimensionality of the system using Isomap. This
essentially allows the estimation of the proteins geometry
by calculating a lower dimensional encoding of “k” nearest
neighbors and then using this greatly reduced dataset for
analysis [3]. This reduces the noise in the observed system and
performs well when reordering the time-dependent sequence
of frames. One disadvantage of this method however is that it
“throws away” frames when it reconstructs the sequence from
the calculated connected graphs.

Outside of work being done specifically for protein dynam-
ics analysis, predicting video frames is also used in some video
compression algorithms [4]. In these algorithms, frames can
be reordered and previous and future frames are predicted
using motion estimation algorithms. While not immediately
applicable to the protein ordering problem, motion estimation
techniques may prove useful in increasing the algorithm’s
robustness to noise and calculating the distance between
frames.

III. ALGORITHM

The algorithm is largely split into three main parts -
preprocessing and feature extraction, distance estimation, and
sorting. By splitting the reordering algorithm into these smaller
steps, it is easier to add and test features as well as generalize
the steps to other more complicated applications in the future.
The algorithm is implemented in MATLAB and leverages the
image processing toolbox for feature extraction and mapping.

A. Feature Extraction and Preprocessing

Before the reordering algorithm is run, the shuffled video
data is preprocessed before the features are extracted and then
sent to the rest of the algorithm. The distance metrics are
calculated solely from the extracted features meaning that the
algorithm significantly reduces the dimensionality of the input
data through its use of Speeded Up Robust Feature (SURF)
feature descriptors. SURF descriptors were chosen because
they can be calculated quickly and are robust to translation,
rotations, and scaling effects.

The randomized video is first converted to grayscale which
is necessary for the SURF feature extraction. Then to speed up
the calculation of the features, the images are downsampled

Adjacent frame point matches

P¥{i X A R
I

Fig. 1. Adjacent frames with feature matches marked.

Seperated frame point matches

Tatched pomts 1
Matched points 2

Fig. 2. Separated frames with feature matches marked.

Fig. 3. Demeaned frame with detected features

(used a 16x smaller image for most tests). Finally the features
are extracted using MATLAB’s built-in SURF detection.

The algorithm also has the option to calculate the features
a de-meaned set of the frames. This allows the removal of
a static background image from the frames and only detect
features on the objects in motion as shown in 3. However in
many cases this resulted in too few features being detected to
accurately reconstruct the video sequence.

B. Distance calculation

After the features of each frame have been extracted, they
are sent to a distance estimation algorithm which quantifies the
likelihood of frames being adjacent. This is done by looking
at the number of feature matches between frames and the
displacement metrics of the matches.

From figures 4-6 we can see that the number of matches
is the strongest indicator of the distance between frames. The
mean and median displacement of the feature matches can
then be used to sort these most likely matches. For most
of the test run in this paper, the median was used because

Number of Matches vs. Distance from Frame

Fraction of Features Matched
.

o L L L .
“i20 o
Distance from Frame

Fig. 4. Number of feature matches vs frame distance

10 Median Feature Displacement vs. Distance from Frame

Displacement Distance

Sl TN e

120 40 60 180

Fig. 5. Median feature displacement vs frame distance

Mean Feature Displacement vs. Distance from Frame

0012

Displacement Distance

. o ont e .
32 A R4

(VY e
\.:ig“_.~ 4 e

0004l * N 3
o

A rd
0002385 R
A

[

o 20 40 60 120 140 160 180

80 100
Distance from Frame

Fig. 6. Mean feature displacement vs frame distance

of its robustness in the presence of outliers stronger linear
relationship to frame distance as shown in figure 5.

For the reordering algorithm, several distance estimation
methods were tested. For determining the strongest match
available, the distance metric was calculated by ranking the
comparisons by number of matches and then sorting the set
corresponding to the highest number of matches by their
median displacements. This metric performed the best with
the “global sort” algorithm which combined the strongest re-
maining matches until arriving at a final sequence. Meanwhile
a matching algorithm that looked at the top 5% of matches
and then sorted those by the median displacement metric
performed best for the “random seed sort” which builds the
sequence linearly from a randomly selected “seed” frame.

An attempt to use machine learning to quantify the weight
of each metric in determining the likelihood of frames being
adjacent was done with mixed success. Originally a classifier
was trained to determine if frames were adjacent but due to
the highly skewed set of training examples (only two adjacent
frames out of a set of n examples) the classifier had poor

[]
NN
8 2
&l

—
NB
N

w

(6]

O1 g O1
W N w
—
N

14 2

Fig. 7. Illustration of global sort algorithm

performance. When taking into account the probability of
being adjacent or fitting a regression to the measured matching
metrics the performance was improved but still outperformed
by the heuristic distance metrics described above.

C. Sorting Algorithm

Given the distance metrics between frames, the sorting
algorithms implemented in this paper attempt to reconstruct
the video frames in the most likely sequence. For this two
main approaches were taken. The first is a “global sort” that
takes into account every possible pairing of frames and sorts
by combining the strongest matches until it results in a single
continuous sequence. The other sorting algorithm starts from
a random frame and attempts to build out by combining the
most likely frame that follows in the remaining pool of frames.

1) Global Sort: The global sorting algorithm is done by
looking at all the available frames that can be matched, finding
the most powerful match, and then combining the associated
sequences. This process is illustrated in figure 7.

Figure 7 shows the sorting process. The most powerful
matches are highlighted in red. In this example, the algorithm
first finds that frames 1 and 4 are the most powerful match
and combines those. It then finds the strongest match from
the remaining mergeable frames (end frames of sequences
and individual frames) and continues merging the strongest
matches. When the algorithm matches two heads or two tail
frames, it performs the necessary flipping of the sequences to
keep the evolution of time correct.

The actual implemented sorting algorithm uses two matrices
of the number of feature matches between frames and the
median displacement of the matched features. The algorithm
then builds the frame groups based on the following pseudo-
code

The global sorting algorithm primarily spends its time
calculating all the feature matches between each pair of frames
which scales as O(IN2). However these calculations can be
done in parallel which greatly speeds up the algorithm and
the resulting matrices can be sorted very quickly to get the
final sequence.

Algorithm 1 Global Sort

Require: Xy = Matrix of frame matches between frames i and j
Require: X, = Matrix of median displacements between i and j

1: Set X diagonal to -1 to disallow matching frame with
itself

2: Create frameGroups array of grouped frames

3: while not all frames combined do

4: im, Jm <— Find the most powerful frame match
5: if %y, j;m in same group then

6: Set Xp(im,jm) = —1

7: else

8: Combine frame groups containing ¢, jm,

9: if 4,,, jm internal then

10: Set corresponding rows and columns to -1

11: end if
12: end if
13: end while

2) Random Seed Sort: The random seed sort algorithm
reduces the number of calculations by building the sequence
from a randomly selected seed frame instead of searching over
the entire space of available frames. The algorithm builds out
the frames in a single direction, picking the best available next
frame from the available pool of frames until it determines it
it better to build in the opposite direction.

The sorting algorithm is shown in figure 8. In this example,
frame 4 is selected as the seed frame. Then the algorithm
builds off in one direction combining with the best match in
the available pool. This process continues until the best match
it selects turns out to be closer to the opposite end of the
constructed sequence. At this point the algorithm returns the
frame to the pool, reverses the build direction and continues.
This process continues until all the frames have been merged.

This process can be expressed by the following psuedocode

Algorithm 2 Random Seed Sort
1: Create frameGroups array of grouped frames
2: Set head and tail to a random seed frame
3: while not all frames combined do

4 if building from tail then

5 toMatch < tail

6: altMatch < head

7: else

8 toMatch <+ head

9: altMatch < tail

10: end if

11: i < best match with toMatch
12: if 7 is closer to altMatch then
13: Return ¢ to available pool
14: Flip build direction

15: else

16: Append or prepend ¢ to toMatch
17: end if

18: end while

H H

____/

54 3 1
25431

Fig. 8. Illustration of random seed sort algorithm

This algorithm has the advantage of building the sequence
immediately and requiring fewer comparisons however it suf-
fers from compounding errors. For example if the sort picks
the wrong frame for ¢, then future sorting will be done from
the incorrect frame resulting in occasional sequence jumps.

IV. RESULTS
A. Test Videos

To test the reordering algorithm, several shuffled videos
were used as inputs. The key requirement was that the chosen
videos don’t contain scene jumps which the algorithm would
have no way of reconstructing (and wouldn’t be present in
experimental data). The chosen videos were the Pixar intro,
a rotating and transforming cube, and a video of a football
throw.

B. Measuring Performance

While it is fairly easy to qualitatively evaluate if a video has
successively been reordered, it is more difficult to quantify
the performance of the algorithm. This is because it is not
expected that the algorithm perfectly reconstructs the original
video since it has no knowledge of the direction of time or start
of the video. However it is desired that reconstructed adjacent
frames are close to the true adjacent frames of the original
video. When designing the performance metric, it should
not penalize the algorithm too heavily if the reconstruction’s
adjacent frames are close to the frame. Additionally it should
not be overly penalized if it selects a frame that is very far
away versus one that is far away. The justification for this is
that it is just as bad to jump 30 frames as it is to jump 300.

All of these requirements led to the choice of a logistic
performance metric. Then the function can be characterized by

Distance between Frames for Global Sort

5
PP M:MLAA | T
i E

(] 50 100 200 50 a 350
me

Fig. 9. True frame distance versus frame ordering for global sort

Distance between Frames for Random Seed Sort

Fig. 10. True frame distance versus frame ordering for random seed sort

the function’s offset and scaling factor. The score for frames
f1 and f5 can be given by

1
l(fh f2) = 14 exp(f0.5(abS(f1 - fz) - 10))

The overall performance is evaluated by summing all these
metrics for adjacent frames and normalizing by the total
number of frames. The lower the metric the better the match.

One shortcoming of this metric is that it doesn’t scale
perfectly when considering very few frames (the weight of
one mismatch is much higher). However between videos of the
same length it largely agrees with a qualitative evaluation of
the algorithm. One notable exception is in videos with several
large sequence jumps in the reconstructed video. Because the
algorithm isn’t penalized too much for these jumps (they are
only one sample) a video with multiple jumps may score
better than one that has a higher average mismatch for a
period of time. This doesn’t necessarily correspond to what is
“visually pleasing” but is arguably a better metric for overall
performance.

C. Input Image Scale

The algorithm was evaluated on how it performs when
changing the scale of the input images. By reducing the
size of the images used for feature detection, the initial
feature detection and feature matching runs faster and with a
lower memory footprint, something important for much larger
datasets. The results shown in figure 11 showed that the global
sorting algorithm had more consistent results while the random
seed sort benefited greatly from larger input image sizes.

Effect of Scaling on Sorting Loss

Fig. 11. Algorithm performance with varying input image scales

Execution Time for 10s Video

Global Global (parallel) Random Seed

Fig. 12. Algorithm execution times for a 10s input video

D. Execution Time

The random seed sort executes much faster than the global
sort (about 4x faster). However the global sort’s execution time
is largely determined by the feature match calculations which
can be parallelized. Then the feature matching time drops from
348.3s for a 10s video to 56.8s (The sort time stays at 4.5s).
Parallelization is more difficult with the random seed algorithm
so the global sort may be in fact faster for most systems if it
can be run in parallel.

E. Frame Skipping

To test how the reordering algorithm handles larger dis-
tances between frames, the algorithm was evaluated with
skipping frames in the input video before shuffling. Again
the global sort proved to be more robust to larger differences
between frames. One thing to note about these results is that
they highlight some of the shortcomings of the fit metric that
was used. Because there were fewer frames in the largely
downsampled versions and the loss metric requires more than
about 20 frame mismatch for the max penalty, the loss figures
are lower than the quality of the video would suggest.

F. Rotation

The reordering algorithm’s performance was also evaluated
when the input images are randomly rotated before the features
are detected. The algorithm performed significantly worse
(0.706 for the global sort and 0.845 for the random seed
sort with 5% random rotations). This seems to be due to the
distance metrics used and would need to be improved before
the algorithm can be used in the presence of rotations.

Effect of Skipping Frames on Sorting Loss

" —Random Seeq|
oilobat

2 3 4 5 6 7 8 9 0
Frame Skip

Fig. 13. Algorithm performance when skipping frames

V. CONCLUSION

This algorithm shows that randomized video frames can be
accurately reordered using feature-based matching and then
passing the calculated distance metrics into either the global
or random seed sorting methods. The global sort provides a
more robust ordering that can be greatly accelerated though
paralleling the calculation of the distance metrics. However
the random seed algorithm shows that shorter sequences can
be effectively ordered if more frequent sequence jumps are
tolerable.

Due to the decoupled nature of the distance metric calcu-
lation and the sorting algorithm, the approaches described in
this paper can be combined with other algorithms that may
be more appropriate for the final application. For example the
distance metric can be replaced with a 3D variant like RMSD
(root-mean-square of atomic deviations) which is often used
in protein research. This metric can then be used to sort the
captured frames using the global sort algorithm.

VI. FUTURE WORK

There are several areas that the proposed algorithm can
be improved and better suited for generalizing to the pro-
tein dynamics reconstruction problem. The first would be to
experiment with using the sorting algorithms with different
distance metrics. This would involve improving the distance
metrics used with 2D images to make them more robust
towards rotations and determining the optimal weightings for
calculating this distance metric from the feature matches.
Along with improving the distance metric calculation, the
sorting algorithm can be further optimized. Some ways it can
be improved is by designing a random seed sort that behaves
more like the global sort by building multiple groups of frames
simultaneously and possibly caching comparisons to speed
up execution. Finally the true test for this algorithm would
be to try applying the approaches used in this paper to sort
experimental data from SLAC and reconstruct a 3D protein’s
dynamics.

ACKNOWLEDGMENT

The author would like to thank the EE368 course staff and
especially TJ Lane for their support and guidance on this
project.

REFERENCES

[1] https://portal.slac.stanford.edu/sites/lcls_public/Pages/Default.aspx

[2] P. Schwander, D. Giannakis, C. H. Yoon, and A. Ourmazd, The symme-
tries of image formation by scattering. II. Applications, Optics Express,
4 June, 2012.

[3] J. Tenenbaum, V. Silva, and J. Langford, A Global Geometric Framework
for Nonlinear Dimensionality Reduction, Science, 22 December, 2000.

[4] B. G. Haskell and A. Puri, MPEG Video Compression Basics, Chapter 2,
25 August, 2011

