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ABSTRACT 
This project combines feature-based methods, the Hough 
transform, and Linear Discriminant Analysis to combine and 
extend past projects [1,2] in the field of currency detection. The 
proposed method attains reasonable accuracy for both coin and 
bill detection while allowing for more general configurations of 
coins and performing coin recognition significantly faster than 
had been achieved previously. 

1. INTRODUCTION 
As more and more of our daily transactions become electronic, the 
prospect of counting more than a few coins, or even small bills, 
begins to feel all the more tedious. For someone who has trouble 
seeing at all or a traveler unfamiliar with the local currency, 
counting money quickly and accurately may seem all the more 
daunting. A couple of previous projects have presented solutions 
to the problems of counting coins [1] and bills[2] with varying 
degrees of success. This paper seeks to provide a unified solution 
that also offers performance suitable for mobile applications. 

The coin and bill detection algorithm solves the problem of 
computing the total value of U.S. currency displayed in a given 
image by solving a set of detection problems – namely, to detect 
the number of each possible bill and each possible coin in the 
image – and then aggregates over the results. Although both 
classes of objects are semantically similar, their visual properties 
and relative expected quantities recommend a distinct approach 
for each. Dollar bills reflect light relatively uniformly and have a 
diverse combination of distinctive patterns that identify each. This 
suggests that a feature-based approach should be effective. Since 
such an approach requires exhaustively comparing candidate 
images from a database, there should be relatively few objects to 
match in a given image for reasonable runtime on compute-
constrained systems. This is a reasonable assumption for bill 
counting because bills occur in much smaller amounts than coins. 
They are also physically much larger than coins – there is roughly 
an order of magnitude of difference in area between a bill and the 
largest coin – so for a fixed image size, one could capture ten or 
more times as many coins as dollars.  
Naturally, the converse applies for coins. With a relatively large 
number of coins expected, we would like as simple and 
computationally efficient an algorithm as possible so that 
reasonable runtime may be expected for dozens of coins, even on 
a phone. These two philosophies suggest separate pipelines for 
each class of currency. In this algorithm, those two pipelines are 
implemented in terms of the Scale-Invariant Feature Transform 
(SIFT) [??] and the circular Hough transform [??], respectively. 

2. METHODOLOGY 
2.1 Bills 
2.1.1 Feature-Based Detection 
The bill detection part of the pipeline implements a relatively 
standard feature-based detection algorithm inspired by previous 
work on foreign bill detection [2]. When an image is taken, the 
algorithm uses SIFT to extract local gradient information at points 
of interest, where a point of interest is one that maximizes the 
response of the Harris-Laplacian detector. These features are 
compared with similarly extracted features from images of the 
obverse and reverse sides of each valid bill, which have been 
stored in a database.1 The algorithm uses the distance ratio test to 
detect correspondences between features in each image. [3] Two 
features are said to match if the Euclidean distance between them 
is less than 1.5 times the Euclidean distance between each of the 
two features and any other feature in the other image. Outliers are 
removed with Random Sample Consensus (RANSAC) [4], which 
estimates the best homography mapping one image to another. 
The above process repeats for each bill in the database while the 
number of inliers detected by RANSAC exceeds an empirically 
determined threshold. 

 
Figure 1. Homography Estimation  

2.1.2 Inlier Removal 
In order to avoid counting bills multiple times, we must remove 
the inliers detected by RANSAC at each iteration that the 
algorithm determines a match. Naively removing only those 
inliers does not suffice to prevent double-counting, since not all 
feature correspondences are detected by RANSAC. To solve this, 
we remove all features within an elliptical region. This ellipse is a 
scaled version of the ellipse specified by the covariance matrix of 

                                                                    
1 In this implementation, the database stores 500-600 features per 

side. 
2 Note that by “downsample”, I mean apply antialiasing filter, 

downsample, etc., not just discarding the unnecessary pixels. 
3 For the sake of simplicity, we assume that, if there are any coins 



the inlier positions (x,y). The ellipse is a compromise between, on 
the one hand, the minimal approach of using a bounding box 
based on the smallest and largest x and y values, and, on the other, 
eliminating all feature points located within the convex hull of the 
inliers. Using an ellipse retains the linear computation time and 
minimal comparisons of the former while roughly approximating 
the shape and orientation of the latter.  

 
Figure 2. Inlier removal in elliptic region 

2.2 Coins 
As mentioned previously, our primary concern with coin 
detection, beyond accuracy, is speed. To that end, Pendise and 
Wang [2] developed an algorithm that relied on the relative sizes 
of American coins and the difference in hue between pennies and 
other coins, rather than feature matching. Unfortunately, they did 
not achieve their goal of reasonable computation time, with 
runtimes ranging between 20 seconds and 1 minute in MATLAB. 
This coin detection algorithm follows a similar progression, but it 
achieves much more reasonable runtimes due to some 
modifications to the circle detection step. Note that the penny 
classification step also differs. 

2.2.1 Preprocessing 
Before the detection step, the algorithm binarizes the input image 
adaptively using Bradley’s Method, which is implemented in 
MATLAB’s imbinarize function. Afterwards, small, dark regions 
within connected light regions are removed. This combination of 
algorithms aims to remove small, distracting regions prior to 
employing the Circular Hough Transform.  

 
Figure 3. Results of fast circle detection displayed on top of 
preprocessed image 

2.2.2 Fast Circle Detection 
The standard method for detecting circular objects in an image is 
the Circular Hough Transform (CHT). The CHT parameterizes a 
circle as (x-x_o).^2 + (y-y_o).^2 = R for some radius R and 
computes votes for each edge pixel as to where the (x_o, y_o) 
might be. The pixels with votes above a threshold are classified as 
centers of circles. To find circles of uncertain radius, this process 
is repeated over a range of possible radii. For a large radius range, 
the process is slow, and this is cited as the primary reason for the 
slow runtime of [1]. 
In order to overcome the slow runtime, we employ successively 
decreasing downsampling rates to restrict the CHT computation to 
a small range that can be evaluated quickly. To begin, we assume 
that any single coin in the image will not take up more than a 
certain amount of the field of view, say half of the minimal 
dimension of the image. We downsample2 the image so that a coin 
of this maximum size would have a radius less than a specified 
radius R_max. R_max is 20 in this implementation. We then 
search the much smaller range [R_min, R_max], which is much 
easier to search than the original space. If a circle is detected, then 
we have an idea of the scale of all coins in the image, since the 
radii of each type of coin is known. Otherwise, we downsample 
the original image by a smaller factor such that a coin that was of 
radius R_min in the first downsampled image is now of radius 
R_max, and again we search for circles in the same small range 
[R_min, R_max]. In this way, we may exhaustively search all 
possible radii until either we find a coin or a stopping criterion is 
met. This computation takes several seconds on an average image, 
compared to the naïve approach, which takes 20-60s. 

2.2.3 Classification 
Our coin classification uses the relative size of coins as they 
appear in the image. We assume that the camera normal is 
perpendicular to the surface on which the coins lie. Since 
photographs may be taken at arbitrary distances, classification 
based on coin size requires calibration. As in [1], we calibrate 
based on the penny.3 The penny is already reasonably well-
localized, but to employ the simplest classifier possible, we find 
the projection from the color space into the real numbers that 
maximizes the separation between pennies and non-pennies using 
Fisher Linear Discriminant Analysis (LDA) . The classes are well-
separated, and a reasonably accurate classifier may then be 
implemented via thresholding in the reduced space. 

At this point, we are ready to classify our coins. We classify as 
pennies any circle that contains more penny pixels than non-
penny pixels. The average radius of these pennies becomes our 
reference, and we can compute the expected radii of the other coin 
classes and use minimum-distance detection to determine which 
coins are of which class. If the radius of a coin of a given class is 
distributed i.i.d. Gaussian, and if each class has the same variance 
and prior probabilities, this is the MAP estimate.  

                                                                    
2 Note that by “downsample”, I mean apply antialiasing filter, 

downsample, etc., not just discarding the unnecessary pixels. 
3 For the sake of simplicity, we assume that, if there are any coins 

in the image, at least one is a penny. Otherwise, we must resort 
to SIFT to calibrate our measurements as in [1], which has 
horrible performance. 



 
Figure 4. Labeled coins. Quarters (pink), nickels (cyan), 
pennies (blue). 

3. EVALUATION 
Performance of this algorithm was evaluated on images 
collectively containing roughly 50 bills and over 100 coins.  

3.1 Runtime 
The bill detection pipeline averaged 2.46s when there were no 
bills present in the image and 4.41s with seven bills, exhibiting 
the expected dependence on the number of bills present. This 
study uses a relatively small number of reference bills ($1, $5, and 
$20), so the runtime could easily be expected to reach into the 
tens of seconds if it were to check all possible U.S. bills. 
Parallelization is required for computation times that would be 
acceptable for a viable product. Fortunately, searching for a 
particular type of bill is independent of searching for any other 
type of bill, so we can expect nearly linear gains from 
parallelization. 

The coin detection pipeline averages just over 3s for images that 
don’t have coins, while it does not exceed 1s for images with up 
to 40 coins. This trend may seem odd, but the long runtime for no 
coins is a result of the fast circle detection algorithm iterating until 
it reaches its stopping criterion. When a coin is present, the circle 
detection algorithm has to iterate many fewer times before the 
first circle is detected. 

3.2 Detection 
Under ideal conditions, this automated coin and bill detection 
algorithm easily recognizes various assortments and arrangements 
of dollar bills, and it does quite well on coins, too. In both cases, 
the algorithm can distinguish partially occluded currency. The 
conditions under which the algorithm is most successful are: 1) 
more than just the hair of the face on any bill is visible; 2) pennies 
are not heavily tarnished; 3) coins do not overlap bills, and vice 
versa; 4) coins overlap by less than 50%. These conditions are 
already more strict than previous work [1,2], which did not allow 
coins to overlap. The conditions under which I tested this 
algorithm were slightly more general: 1) more than ½ in. of a bill 
must be visible; 2) coins do not overlap bills, and vice versa. 
Under these conditions, the algorithm achieves correct detection 
and classification of bills 87% of the time and correctly identifies 
coins with 83% accuracy. Figure 7 describes the denominations 
more precisely.  

The algorithm has particular difficulty with pennies that are nearly 
black in color, which is likely due to the lack of copper hue that 

distinguishes a penny from other coins. Unsurprisingly, the 
algorithm misclassifies coins that overlap with pennies by more 
than 50%, since it is an explicit assumption of our model that 
coins will not overlap by more than 50%. The algorithm also 
struggles a bit with distinguishing nickels and quarters because of 
their similarity in size. This confusion is exacerbated by any 
perspective change caused by tilting the camera. 
 

 
Figure 5. Results for thumb_IMG_1352_1024. Quarter (blue), 
Nickel (cyan), Dime (green), Penny (red). 

 
Figure 6. Results for thumb_IMG_1360_1024 



4. Future Work 
This project has continued the efforts of past currency detection 
algorithms by proposing a method for fast localization and 
measurement of circular objects, fast classification of pennies, and 
orientation aware removal of inlier features. Moving forward, the 
most immediate impediment is robustness to perspective changes. 
Even a small tilt of the camera can make nickels seem like 
quarters and vice versa. A simple approach would be to use the 
homography estimate from the RANSAC step of bill detection to 
estimate the perspective of the image relative to a flat reference, 
but I did not find that effective. Perhaps an EM-based approach 
could jointly estimate the classes of coins and the perspective.  
More effective segmentation is also required, both to eliminate 
misclassifications due to excessive tarnishing of pennies and to 
enable detection of coins on top of dollar bills.  Ultimately, this 
project would also need to be ported over to Android/iOS to 
provide utility to anyone.  
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Image 
(thumb_IM
G_##.jpg) 

Bills Coins Quarters Dimes Nickels Pennies 

1323_1024 7/7 0/0 0/0 0/0 0/0 0/0 

1327_1024 6/7 0/0 0/0 0/0 0/0 0/0 

1329_1024 7/7 0/0 0/0 0/0 0/0 0/0 

1330_1024 5/7 0/0 0/0 0/0 0/0 0/0 

1331_1024 5/7 0/0 0/0 0/0 0/0 0/0 

1333_1024 0/0 15/20 0/0 0/0 0/0 15/20 

1334_1024 0/0 21/28 0/0 0/0 0/0 21/28 

1340_1024 0/0 15/16 4/4 4/4 3/4 4/4 

1352_1024 0/0 32/38 10/11 3/4 3/4 16/19 

1360_1024 3/3 9/9 2/2 2/2 0/0 5/5 

Figure 7. Table of classification results. Listed as  
[number correct]/[total]. 


