
Automatic Coin and Bill Detection
Dominic Delgado
Stanford University

650 Serra Mall
Stanford, CA 94305

delgado4@stanford.edu

ABSTRACT
This project combines feature-based methods, the Hough
transform, and Linear Discriminant Analysis to combine and
extend past projects [1,2] in the field of currency detection. The
proposed method attains reasonable accuracy for both coin and
bill detection while allowing for more general configurations of
coins and performing coin recognition significantly faster than
had been achieved previously.

1. INTRODUCTION
As more and more of our daily transactions become electronic, the
prospect of counting more than a few coins, or even small bills,
begins to feel all the more tedious. For someone who has trouble
seeing at all or a traveler unfamiliar with the local currency,
counting money quickly and accurately may seem all the more
daunting. A couple of previous projects have presented solutions
to the problems of counting coins [1] and bills[2] with varying
degrees of success. This paper seeks to provide a unified solution
that also offers performance suitable for mobile applications.

The coin and bill detection algorithm solves the problem of
computing the total value of U.S. currency displayed in a given
image by solving a set of detection problems – namely, to detect
the number of each possible bill and each possible coin in the
image – and then aggregates over the results. Although both
classes of objects are semantically similar, their visual properties
and relative expected quantities recommend a distinct approach
for each. Dollar bills reflect light relatively uniformly and have a
diverse combination of distinctive patterns that identify each. This
suggests that a feature-based approach should be effective. Since
such an approach requires exhaustively comparing candidate
images from a database, there should be relatively few objects to
match in a given image for reasonable runtime on compute-
constrained systems. This is a reasonable assumption for bill
counting because bills occur in much smaller amounts than coins.
They are also physically much larger than coins – there is roughly
an order of magnitude of difference in area between a bill and the
largest coin – so for a fixed image size, one could capture ten or
more times as many coins as dollars.
Naturally, the converse applies for coins. With a relatively large
number of coins expected, we would like as simple and
computationally efficient an algorithm as possible so that
reasonable runtime may be expected for dozens of coins, even on
a phone. These two philosophies suggest separate pipelines for
each class of currency. In this algorithm, those two pipelines are
implemented in terms of the Scale-Invariant Feature Transform
(SIFT) [??] and the circular Hough transform [??], respectively.

2. METHODOLOGY
2.1 Bills
2.1.1 Feature-Based Detection
The bill detection part of the pipeline implements a relatively
standard feature-based detection algorithm inspired by previous
work on foreign bill detection [2]. When an image is taken, the
algorithm uses SIFT to extract local gradient information at points
of interest, where a point of interest is one that maximizes the
response of the Harris-Laplacian detector. These features are
compared with similarly extracted features from images of the
obverse and reverse sides of each valid bill, which have been
stored in a database.1 The algorithm uses the distance ratio test to
detect correspondences between features in each image. [3] Two
features are said to match if the Euclidean distance between them
is less than 1.5 times the Euclidean distance between each of the
two features and any other feature in the other image. Outliers are
removed with Random Sample Consensus (RANSAC) [4], which
estimates the best homography mapping one image to another.
The above process repeats for each bill in the database while the
number of inliers detected by RANSAC exceeds an empirically
determined threshold.

Figure 1. Homography Estimation

2.1.2 Inlier Removal
In order to avoid counting bills multiple times, we must remove
the inliers detected by RANSAC at each iteration that the
algorithm determines a match. Naively removing only those
inliers does not suffice to prevent double-counting, since not all
feature correspondences are detected by RANSAC. To solve this,
we remove all features within an elliptical region. This ellipse is a
scaled version of the ellipse specified by the covariance matrix of

1 In this implementation, the database stores 500-600 features per

side.
2 Note that by “downsample”, I mean apply antialiasing filter,

downsample, etc., not just discarding the unnecessary pixels.
3 For the sake of simplicity, we assume that, if there are any coins

the inlier positions (x,y). The ellipse is a compromise between, on
the one hand, the minimal approach of using a bounding box
based on the smallest and largest x and y values, and, on the other,
eliminating all feature points located within the convex hull of the
inliers. Using an ellipse retains the linear computation time and
minimal comparisons of the former while roughly approximating
the shape and orientation of the latter.

Figure 2. Inlier removal in elliptic region

2.2 Coins
As mentioned previously, our primary concern with coin
detection, beyond accuracy, is speed. To that end, Pendise and
Wang [2] developed an algorithm that relied on the relative sizes
of American coins and the difference in hue between pennies and
other coins, rather than feature matching. Unfortunately, they did
not achieve their goal of reasonable computation time, with
runtimes ranging between 20 seconds and 1 minute in MATLAB.
This coin detection algorithm follows a similar progression, but it
achieves much more reasonable runtimes due to some
modifications to the circle detection step. Note that the penny
classification step also differs.

2.2.1 Preprocessing
Before the detection step, the algorithm binarizes the input image
adaptively using Bradley’s Method, which is implemented in
MATLAB’s imbinarize function. Afterwards, small, dark regions
within connected light regions are removed. This combination of
algorithms aims to remove small, distracting regions prior to
employing the Circular Hough Transform.

Figure 3. Results of fast circle detection displayed on top of
preprocessed image

2.2.2 Fast Circle Detection
The standard method for detecting circular objects in an image is
the Circular Hough Transform (CHT). The CHT parameterizes a
circle as (x-x_o).^2 + (y-y_o).^2 = R for some radius R and
computes votes for each edge pixel as to where the (x_o, y_o)
might be. The pixels with votes above a threshold are classified as
centers of circles. To find circles of uncertain radius, this process
is repeated over a range of possible radii. For a large radius range,
the process is slow, and this is cited as the primary reason for the
slow runtime of [1].
In order to overcome the slow runtime, we employ successively
decreasing downsampling rates to restrict the CHT computation to
a small range that can be evaluated quickly. To begin, we assume
that any single coin in the image will not take up more than a
certain amount of the field of view, say half of the minimal
dimension of the image. We downsample2 the image so that a coin
of this maximum size would have a radius less than a specified
radius R_max. R_max is 20 in this implementation. We then
search the much smaller range [R_min, R_max], which is much
easier to search than the original space. If a circle is detected, then
we have an idea of the scale of all coins in the image, since the
radii of each type of coin is known. Otherwise, we downsample
the original image by a smaller factor such that a coin that was of
radius R_min in the first downsampled image is now of radius
R_max, and again we search for circles in the same small range
[R_min, R_max]. In this way, we may exhaustively search all
possible radii until either we find a coin or a stopping criterion is
met. This computation takes several seconds on an average image,
compared to the naïve approach, which takes 20-60s.

2.2.3 Classification
Our coin classification uses the relative size of coins as they
appear in the image. We assume that the camera normal is
perpendicular to the surface on which the coins lie. Since
photographs may be taken at arbitrary distances, classification
based on coin size requires calibration. As in [1], we calibrate
based on the penny.3 The penny is already reasonably well-
localized, but to employ the simplest classifier possible, we find
the projection from the color space into the real numbers that
maximizes the separation between pennies and non-pennies using
Fisher Linear Discriminant Analysis (LDA) . The classes are well-
separated, and a reasonably accurate classifier may then be
implemented via thresholding in the reduced space.

At this point, we are ready to classify our coins. We classify as
pennies any circle that contains more penny pixels than non-
penny pixels. The average radius of these pennies becomes our
reference, and we can compute the expected radii of the other coin
classes and use minimum-distance detection to determine which
coins are of which class. If the radius of a coin of a given class is
distributed i.i.d. Gaussian, and if each class has the same variance
and prior probabilities, this is the MAP estimate.

2 Note that by “downsample”, I mean apply antialiasing filter,

downsample, etc., not just discarding the unnecessary pixels.
3 For the sake of simplicity, we assume that, if there are any coins

in the image, at least one is a penny. Otherwise, we must resort
to SIFT to calibrate our measurements as in [1], which has
horrible performance.

Figure 4. Labeled coins. Quarters (pink), nickels (cyan),
pennies (blue).

3. EVALUATION
Performance of this algorithm was evaluated on images
collectively containing roughly 50 bills and over 100 coins.

3.1 Runtime
The bill detection pipeline averaged 2.46s when there were no
bills present in the image and 4.41s with seven bills, exhibiting
the expected dependence on the number of bills present. This
study uses a relatively small number of reference bills ($1, $5, and
$20), so the runtime could easily be expected to reach into the
tens of seconds if it were to check all possible U.S. bills.
Parallelization is required for computation times that would be
acceptable for a viable product. Fortunately, searching for a
particular type of bill is independent of searching for any other
type of bill, so we can expect nearly linear gains from
parallelization.

The coin detection pipeline averages just over 3s for images that
don’t have coins, while it does not exceed 1s for images with up
to 40 coins. This trend may seem odd, but the long runtime for no
coins is a result of the fast circle detection algorithm iterating until
it reaches its stopping criterion. When a coin is present, the circle
detection algorithm has to iterate many fewer times before the
first circle is detected.

3.2 Detection
Under ideal conditions, this automated coin and bill detection
algorithm easily recognizes various assortments and arrangements
of dollar bills, and it does quite well on coins, too. In both cases,
the algorithm can distinguish partially occluded currency. The
conditions under which the algorithm is most successful are: 1)
more than just the hair of the face on any bill is visible; 2) pennies
are not heavily tarnished; 3) coins do not overlap bills, and vice
versa; 4) coins overlap by less than 50%. These conditions are
already more strict than previous work [1,2], which did not allow
coins to overlap. The conditions under which I tested this
algorithm were slightly more general: 1) more than ½ in. of a bill
must be visible; 2) coins do not overlap bills, and vice versa.
Under these conditions, the algorithm achieves correct detection
and classification of bills 87% of the time and correctly identifies
coins with 83% accuracy. Figure 7 describes the denominations
more precisely.

The algorithm has particular difficulty with pennies that are nearly
black in color, which is likely due to the lack of copper hue that

distinguishes a penny from other coins. Unsurprisingly, the
algorithm misclassifies coins that overlap with pennies by more
than 50%, since it is an explicit assumption of our model that
coins will not overlap by more than 50%. The algorithm also
struggles a bit with distinguishing nickels and quarters because of
their similarity in size. This confusion is exacerbated by any
perspective change caused by tilting the camera.

Figure 5. Results for thumb_IMG_1352_1024. Quarter (blue),
Nickel (cyan), Dime (green), Penny (red).

Figure 6. Results for thumb_IMG_1360_1024

4. Future Work
This project has continued the efforts of past currency detection
algorithms by proposing a method for fast localization and
measurement of circular objects, fast classification of pennies, and
orientation aware removal of inlier features. Moving forward, the
most immediate impediment is robustness to perspective changes.
Even a small tilt of the camera can make nickels seem like
quarters and vice versa. A simple approach would be to use the
homography estimate from the RANSAC step of bill detection to
estimate the perspective of the image relative to a flat reference,
but I did not find that effective. Perhaps an EM-based approach
could jointly estimate the classes of coins and the perspective.
More effective segmentation is also required, both to eliminate
misclassifications due to excessive tarnishing of pennies and to
enable detection of coins on top of dollar bills. Ultimately, this
project would also need to be ported over to Android/iOS to
provide utility to anyone.

5. ACKNOWLEDGMENTS
My thanks to my advisor, Gordon Wetzstein, for his patience and
guidance. Thanks also to JB Boin for his implementation of
SIFT_MATCH, which was my building block for the matching
functionality. Finally, I would like to acknowledge the creators of
VLFEAT, whose library I used.

6. REFERENCES
[1] Mihir Pendise and Yiwei Wang, 2012. Automated Coin

Detection on Android Phone. EE368 Class Project.
Unpublished

[2] Michael Digman and Christian Elder, 2013. Foreign Bill
Detection, Identification and Currency Conversion Using
Sift. EE368 Class Project. Unpublished.

[3] David G. Lowe. 2004. Distinctive Image Features from
Scale-Invariant Keypoints. Int. J. Comput. Vision 60, 2
(November 2004), 91-110.
DOI=http://dx.doi.org/10.1023/B:VISI.0000029664.99615.
94

[4] Martin A. Fischler and Robert C. Bolles. 1981. Random
sample consensus: a paradigm for model fitting with
applications to image analysis and automated
cartography. Commun. ACM 24, 6 (June 1981), 381-395.
DOI=http://dx.doi.org/10.1145/358669.358692

[5] Derek Bradley and Gerhard Roth. 2007. Adaptive
Thresholding using the Integral Image. Journal of
Graphics, GPU, and Game Tools 12, 2 (2007), 13–21.
DOI:http://dx.doi.org/10.1080/2151237x.2007.10129236

[6] Michael Digman and Christian Elder, 2013. Foreign Bill
Detection, Identification and Currency Conversion Using
Sift.

Image
(thumb_IM
G_##.jpg)

Bills Coins Quarters Dimes Nickels Pennies

1323_1024 7/7 0/0 0/0 0/0 0/0 0/0

1327_1024 6/7 0/0 0/0 0/0 0/0 0/0

1329_1024 7/7 0/0 0/0 0/0 0/0 0/0

1330_1024 5/7 0/0 0/0 0/0 0/0 0/0

1331_1024 5/7 0/0 0/0 0/0 0/0 0/0

1333_1024 0/0 15/20 0/0 0/0 0/0 15/20

1334_1024 0/0 21/28 0/0 0/0 0/0 21/28

1340_1024 0/0 15/16 4/4 4/4 3/4 4/4

1352_1024 0/0 32/38 10/11 3/4 3/4 16/19

1360_1024 3/3 9/9 2/2 2/2 0/0 5/5

Figure 7. Table of classification results. Listed as
[number correct]/[total].

