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Abstract—In this paper, I study the problem of phase
retrieval with total variation (TV) smoothing and denoising.
I construct an optimization model with an anisotropic TV
penalty term, then show how to solve it using a proxi-
mal gradient method. This iterative-shrinkage-thresholding
phase retrieval algorithm (ISTPRA) combines fixed-point
iterations with a fast gradient solver for the convex
subproblem. I compare my algorithm’s performance to
several alternating projection methods. My results show
that ISTPRA achieves a lower reconstruction error, while
remaining robust to noise.

I. INTRODUCTION

In many science and engineering applications, we can
only measure the magnitude of a signal’s Fourier trans-
form and not its phase. For example, in optical settings,
devices like CCD cameras capture just the photon flux,
so information about the image is lost. This information
is often more important than the Fourier magnitude. As
an illustration, in Fig. |1} I swap the Fourier phases of two
images and display the results. The output images bear
a clear resemblance to the input with the corresponding
phase, rather than magnitude. Thus, ignoring the phase
and simply performing an inverse Fourier transform will
lead to a poor reconstruction of the signal.

Our challenge is to accurately recover a signal from
measurements of its Fourier magnitude. This problem,
known as phase retrieval, arises in a wide range of
fields including optics, X-ray crystallography, electron
microscopy, and astronomy. The classical approach is to
apply an alternating projection algorithm, such as hybrid
input-output (HIO), that iteratively imposes time and
frequency domain constraints [1]. More recent work has
focused on constructing a formal model that incorporates
prior information on the signal [2]]. One popular model is
PhaseLift, which casts phase retrieval as a semidefinite
program (SDP) solvable by standard convex optimization
techniques [3]. Other research has explored the effects
of imposing sparsity constraints [4] [5].

In this paper, I develop an optimization model for
phase retrieval with total variation regularization. Total
variation has been shown to be an excellent penalty func-
tion for denoising signals [6]. Furthermore, it is convex
and allows us to employ proximal gradient methods to
solve the optimization problem. I derive a proximal al-
gorithm based on the monotone fast iterative-shrinkage-
thresholding algorithm (MFISTA) by [14]. With an ap-
propriate initialization, my algorithm converges within
20 iterations and recovers the signal with 14% greater
accuracy than classical projection methods. These results
are robust to noise.

This paper is organized as follows. In section
I consider phase retrieval as a feasibility problem. I
examine three projection algorithms, comparing their
performance and discussing their limitations. This leads
me to section where I reformulate phase retrieval as
an optimization problem with total variation regulariza-
tion. I show that this problem can be solved using the
proximal gradient method and propose a new algorithm,
ISTPRA. In section I test my algorithm on a set
of images, analyzing its accuracy and performance with
noise. Finally, section E concludes.

II. FEASIBILITY PROBLEM

A. Problem Formulation

Let z € R™*" denote the image to be recovered and
b= |Fz|e R™™ its Fourier magnitude, where F is the
2D discrete Fourier transform (DFT) operator. We know
x has non-zero support on a bounded set £ and define
the set of such images as

S = {xi,j‘wi,j =0 for (Z,j) ¢ E} (1)

Given an observation b, we are interested in images
whose Fourier magnitudes match b, i.e.

B = {z:,||Fz|= b} 2
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Fig. 1: An example showing the importance of the Fourier phase in reconstructing an image (adapted from [7]]).

Define the projection operators

v, if (i,5) € E
Ps(z) =< "7 ’ 3
s(@) {0 otherwise ©)
and
by TR if (Fa)i; # 0
Pplz) =F 1), i, = 217l v
5 (@) (@), 9 {(]—"m)w otherwise

“4)
The operator Pp constructs a modified signal § by
combining the known Fourier magnitude b with the
phase of Fx at every pixel where the DFT of z is non-
zero. If the DFT is zero, the phase is taken to be zero. Pp
then takes the inverse DFT of ¢ to obtain the projection
of x into B.
With this notation, I can formulate phase retrieval as
a feasibility problem

findze SNB
B. Projection Algorithms

®)

Problem [3]is usually solved by a projection algorithm.
Here I describe three: error reduction (ER) [8], hybrid
projection reflection (HPR) [9], and relaxed averaged
alternating reflection (RAAR) [10]. The algorithm pro-
ceeds iteratively. At every iteration k, an approximation
of the signal z* is generated by the update rule [1]]

Algorithm | Formula
ER zF = Ps'PB(xk_l)
F=(1 I—Pg, —
HPR " = (( +6)7]Zi793+ Ps..
_ BPs)(x"")
= (26Ps, P 11— 3P
RAAR | © (28Ps, B+ﬁk—1I8 s, +
(1-28)Pp)(=""")

(b) Initial Value

(a) Padded Image

Fig. 2: The test image was zero-padded and z initialized
to the mask corresponding to the non-zero support.

where S4 := SN {z; ;j|z;; > 0 for all (,j) € E}|I| and
B > 0 controls the step size. The updates continue until
a stopping criteria is reached, typically when

AF = ||zF — P2 < €

(6)
for a user-specified tolerance € > 0.

C. Experimental Comparison

I implement ER, HPR, and RAAR in MATLAB and
compare their performance on the 512x 512 Lena image.
For test purposes, I zero-pad the image so the DFT
oversamples by a factor of two before computing its
Fourier magnitude. My non-zero support £ contains all
pixels outside the padding region, and I initialize each
algorithm to its corresponding mask (see Fig. 2). At

THPR is simply a restriction of hybrid input-output (HIO) to the set
of non-negative signals with support E.



A (c) HPR (8 = 0.95)

(d) RAAR (8 = 0.95)

Fig. 3: A comparison of different projection algorithms.
HPR gives the most accurate reconstruction with a
normalized error of 0.1258.

iteration k, I compute ¥, A*  and the normalized error
from the true image v,

k
. 2" —v]lr
err(z",v) == ————

’ [vllr

(7
calculated over (i,j) € E. The updates terminate when
A* <1076 or k > 200. My results are shown in Fig.

I find that 5 = 0.95 produces the best reconstructions
by HPR and RAAR, with err(z*, v) equal to 0.1258 and
0.1372, respectively. ER performs far worse, attaining an
error of 0.3474 upon termination at 44 iterations. The
recovered ER image is unrecognizable as Lena: only
a faint outline of the hat and shoulder survive, while
all other features are lost. In contrast, HPR and RAAR
recover the full human figure, including details of the
face and hair as well as background shapes. However,
both images exhibit a distinct grainy texture.

This graininess is the main contributor to the recon-
struction error. Although Lena is recognizable, images
(c) and (d) in Fig. |§| suffer from a rough, noisy pattern
that obscures fine edges, such as the folds of the hat. In
some applications, noise may be a serious issue, espe-
cially if we expect the image to fulfill certain smoothness
constraints.

III. TOTAL VARIATION-BASED PHASE RETRIEVAL
A. Optimization Problem

In order to balance Fourier accuracy with other signal
constraints, I reformulate phase retrieval as an optimiza-
tion problem

min {c(Fzx,b) + Ar(x)} ®)
zeC
The cost function ¢ : R}*™ x R"™*™ — R penalizes
deviations of the DFT of = from the known Fourier
magnitude b. Typically in the literature, c(x,y) is taken
to be the squared distance metric ||z — y||. The regular-
ization function r : R™*™ — R incorporates additional
information on x, e.g. smoothness, which contributes to
the total cost via the weight A > 0. As A increases, the
objective places more importance on regularizing x.
For smoothing and denoising, one popular choice for
r(zx) is the l;-based anisotropic total variation,

m—1n—1
V() =Y > oy =zl e, — 2}
i=1 j=1
m—1 n—1
+ Z |Tin = Tit1n|+ lem,j — Tm 1]
i=1 j=1
which we can write compactly as TV(z) = ||Vz|,

where V is the 2D first difference operator. The total
variation captures the sum of the absolute difference
between neighboring row/column values. As a regu-
larizer, it penalizes large changes in neighboring pixel
intensities, making it useful for removing noise. Fur-
thermore, unlike techniques such as median filtering, TV
regularization preserves edges so that only flat regions
of an image are smoothed [11]] [12].
The phase retrieval problem becomes

min { || 7| —b||%+2XTV () } ©)

Here I assume the signal lies in a known convex set C.
For example, if x is an image with pixel values in the
range [[,u], then C' is the box

By, ={z:1<z;; <wuforallij}

The unconstrained case corresponds to C' = R™*™. A
number of algorithms exist to solve problems of the form
[l which derive from the proximal gradient method.

B. Proximal Gradient Method

Consider problems of the form

min{F(z) = f(z) + g(z)} (10)



where g : R™*™ — (—o00,00] is a proper closed,
convex function and f : R™*"™ — R is continuously
differentiable. The function g has a proximal map

. 1
proxtg(v) := argmin {2t|»€ - ’U|2+9($)}

and a common approach to solving[I0|is via the proximal
gradient method, which iteratively updates

Th41 = pI'Othg({L‘k - thf(xk))

See Parikh and Boyd [13]] for a thorough treatment.

Various extensions of this method exist in the liter-
ature; for the purposes of this paper, I focus on the
monotone fast iterative-shrinkage-thresholding algorithm
(MFISTA) presented in [14]. This algorithm has nice
convergence properties and is shown to work well for
convex TV-based denoising and deblurring. Although my
cost function is non-convex, we will see that MFISTA
produces a fairly accurate result given the appropriate
initialization.

For ease of notation, define the proximal map

MFISTA (2, L, K)

Input: z initial value, L > 0 step size, K
iterations.

Initialize: vy, = xo,t; = 1.

Step k: (1 <k <K)

2z = pr.(Yx)
xp = argmin{F(z) : © = 2z, Tp_1}
1+ /14483
tey1 = 5
t tr—1

k
Yht1 = Tk + —— (2 — ) +
tkt1

(Tk — Tp—1)
tkt1

Output: z* = xk.

C. Phase Retrieval Algorithm
Problem [9] is a specific case of [I0] with

(@) = ||Fz|-bl%
g(x) = 22TV () + Ic(z)

where

0 ifzeC
I =
c(@) {oo ife¢gC

is the indicator function of inclusion in C. In order to
use MFISTA, we need the following result.
Lemma 3.1: The gradient of f(z) = |||Fz|-b||% is
Fx

Vf(r) =2 <$ - F1 {bWD =2(I — Pp)(z)
(12)

Proof See section 4.3 of [[15].

Plugging into |1 1{and factoring out % from the objective,
I find the proximal map is

argmin
zeC
To compute this mapping, I first consider the simpler

TV-based denoising problem
i —d||%+2aTV
min {|lz — d|+20TV(2)}

2

o (-3 -Pow)

+ 22)\TV(x)}
P L

13)

This is a convex optimization problem, which can be

solved by deriving its dual and applying a gradient-

based method. Beck and Teboulle provide a full proof

in section IV of [14]. Here I merely reproduce their
solution. Define the following notation:

e Pp(p,q) = (r,s) where r € R™=1DX" and s ¢

R™*("=1) is the projection

Pij

— PO i,
y» 91,
max(1, |pi ;[)"

max(1, [g; ;)
e Pc is the orthogonal projection operator onto C.
o L :RM=DxnyRgmx(n=1) _y Rmxn i the operator

Tig =

L(p,q)i; =Pij+ ¢ij—DPi-1j— Gi,j—1

where we assume po ; = pm,j = G0 = Gijn = 0
forallt=1,...,m,j=1,...,n.

o L Rmxn y R(m=1)xny Rmx(n—1) s the adjoint
of £ given by L*(z) = (p, q), where p € R(m—1)x~
and ¢ € R™*("=1) are

pi,j:.%‘i,j—l‘H_l,]’,Z':1,...,m—1,j:1,...,n
qi,j zsci’j—xi,j+1,i:1,...7m,j:1,...,n—1
The dual of the denoising problem is

min {—||Hc(d — aL(p,q)|3+]ld — aL(p,q)||3}
(p,q)eP (14)

where Ho () := x—"Pc(x). We can recover the solution
of the primal problem from the dual variables with

z = Po(d — aL(p,q)) (15)



This observation gives us the fast gradient projection
(FGP) algorithm.

FGP(d, 3, N, n)

Input: d observed image, « regularization
weight, IV iterations, 7 > 0 tolerance.
Initialize: (7’1,51) = (po,(]o) = (070),t1 = 1
Step k: (1 <k <N)

yr = Po(d — al(ry, s))
(Pr,qx) = Pp ((Tk,sk) + 82”(%))

zp = Po(d — aLl(pr, qx))

ek —2k_a|lp

€= —————
2kl 7

If €, < 7, terminate.

1+ 4/1+4t2
2

thr1 =
tp — 1
Tk+1 = Dk + (Pr — Pr—1)
tet1
ty— 1
Qr+1 = qr + (gr — qr—1)
trt1

Output: z* = Po(d — aL(pn, qn)).

If we define the solution to [13| as 2* := D¢(d, @),
then the proximal map of [9] is

p) =De(v-F0-Pow. 7)o

Thus, to apply MFISTA to our phase retrieval problem,
we must solve a TV-based denoising subproblem at every
iteration. The resulting iterative-shrinkage-thresholding
phase retrieval algorithm (ISTPRA) is

ISTPRA (o, L, M, \, 1))

Input: z( initial value, L > 0 step size, M
iterations, A > 0 regularization, n > 0 tolerance.
Initialize: y; = xg,t; = 1.

Step k: (1 < k< M)

2 2\
2k = FGP (yk - Z(I _PB)(yk)7 L7Ma77>

argmin  {|||Fz|—b||7+2ATV(2)}

r€{zk,Tr—1}

1+ /14482
2

T =

the1 =

ty k
Yk+1 = T + tf(zk — 25 + (xr — Tp—1)

k41 tht1
Output: z* = zg.

. .

Since our objective is non-convex, a warm start is
crucial to reconstruction accuracy. In the next section,
I test ISTPRA with an initial xy determined by the
projection algorithms discussed in

IV. RESULTS

A. Regularization Weights

I implement my algorithm in MATLAB and analyze
its performance on the 512 x 512 Lena image, over-
sampling the DFT by a factor of two as before. My
parameters are L = 3, M = 20,n = 107*,C = By 1,
and domain E' containing the set of pixels outside the
zero-padded region. I take as my initial 2y the HPR result
from section [[I-C| as this produced the lowest error. The
recovered images for a few A are shown in Fig. ] At
A = 0.05, the image remains grainy and textured. As I
increase the regularization weight, the graininess begins
to smooth out so features like Lena’s shoulder resemble
the true image. However, when A\ = (.20, details such
as the eyes and strands of hair start to blur, indicating
that my total variation penalty is too high.

To determine the optimal A, I run ISTPRA with a
range of TV weights and calculate the reconstruction
error for each output. Fig. [5] shows that the minimum
error is attained at \* = 0.1 with err(z*,v) = 0.1075, a
decrease of about 14.55% from the HPR error of 0.1258
(Table [l). The corresponding image (b) in Fig. [4] retains
nearly all fine features while significantly reducing the
diagonal texture. Compared to the results of alternating
projection, it is a more faithful recovery of the true Lena.



(a) A =0.05

(b) A =10.10

() A=0.20

Fig. 4: ISTPRA for three X\ values. As ) increases, the image is smoothed further at the expense of textured details.

0.15 0.2
A

Fig. 5: Lena reconstruction error for various TV weights.

The minimum error is attained at A* = 0.1.

0.05 0.1 0.25

B. Noisy Signal Reconstruction

Given the success of TV-based denoising models, I
expect my algorithm to perform well on signals that
have been corrupted by noise. To test this, I repeat the
process from the previous section on the 256 x 256
Cameraman image, with and without additive Gaussian
noise of y = 0,0 = 0.08. The reconstruction error is
calculated with respect to the original (clean) image. I
keep the same parameters as Lena, changing only L = 4
and the domain to the Cameraman mask. Of the three
projection algorithms, HPR achieves the lowest error in
both cases, so I use its output for ISTPRA.

As one would expect, noise gives rise to uniformly
higher errors (Table [[). HPR attains a minimum error of
err(z*,v) = 0.2781 with 5 = 0.86 on the noisy image,
which exceeds the 0.2013 from the clean image. The

TABLE I: Reconstruction Error

Method Lena Camera (Clean) | Camera (Noisy)
ER 0.3474 0.4837 0.5670
HPR 0.1258 0.2013 0.2781

RAAR 0.1372 0.2662 0.3410

ISTPRA || 0.1075 0.1688 0.2094

image recovered from the noisy input is shown in Fig.
[6] (c). Due to the added noise, HPR produces a picture
with significantly more graininess, white lines obscuring
much of the background; the black coat and camera stand
are both roughly textured.

After running ISTPRA with an optimal A\* = 0.20,
the final image (d) is nearly as smooth as the original
(a). The coat is completely black and most of the noisy
lines have been eliminated from the background. Some
diagonal artifacts still remain around the center, but
their edges are fainter. However, due to the large TV
penalty, the fine details of the camera and the man’s
face are lost and the buildings in the distance are barely
distinguishable. There is a clear trade-off between signal
clarity and denoising.

Nevertheless, the ISTPRA error is 0.2094, a decrease
of 24.7% from the HPR error. This is in contrast to a
drop of 16.15% for the clean image input. Thus, we see
that TV regularization improves reconstruction accuracy
by a greater amount in the presence of Gaussian noise.

V. CONCLUSION

I introduced a new method for phase retrieval with
total variation regularization. My method is based on
iteratively solving the proximal map using fast gradient
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(c) HPR (8 = 0.86)

(d) ISTPRA (A = 0.20)

Fig. 6: Phase retrieval in the presence of noise. HPR is
performed on the Fourier magnitude of the noisy image,
and its result is used to initialize ISTPRA.

projections. I presented several examples of image re-
covery, which demonstrate that my algorithm is more
accurate and robust than classical projection schemes
like ER, HPR, and RAAR. Furthermore, my model can
be readily extended to other convex loss functions.

Future work will focus on incorporating more regu-
larizers, developing a model that handles non-Gaussian
priors, and experimenting with alternate proximal algo-
rithms such as primal-dual splitting [18]].
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