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    Abstract- In this paper we seek to produce a bokeh 

effect with a single image taken from an Android device 

by post processing. Depth mapping is the core of Bokeh 

effect production. A depth map is an estimate of depth 

at each pixel in the photo which can be used to identify 

portions of the image that are far away and belong to 

the background and therefore apply a digital blur to the 

background. We present algorithms to determine the 

defocus map from a single input image. We obtain a 

sparse defocus map by calculating the ratio of gradients 

from original image and reblured image. Then, full 

defocus map is obtained by propagating values from 

edges to entire image by using nearest neighbor method 

and matting Laplacian. Based on the defocus map, 

foreground and background segmentation is carried 

out. We show that by enhancing the blurriness of the 

background while preserving the foreground, bokeh 

effect is achieved. Finally, we propose an algorithm to 

add cartoon-like effect on the input image.  
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I.INTRODUCTION  

    Artistic enhancement of photographs is a very popular 

field of research with several applications that are common 

place in the world of smartphone photography.  Recently 

researchers have sought to produce an effect known as 

Bokeh in smartphone photos using digital image processing 

techniques.  Bokeh is the shallow-depth of field effect 

which blurs the background of portrait photos (typically) to 

bring emphasis to the subject in the foreground.  Figure 1 

shows the same image with and without Bokeh effect.  

 

 
            Figure 1. image without and with Bokeh effect 

 

    Bokeh effect is usually achieved in high end SLR 

cameras using portrait lenses that are relatively large in size 

and have a shallow depth of field.  It is extremely difficult 

to achieve the same effect (physically) in smart phones 

which have miniaturized camera lenses and sensors.  

However, the latest iPhone 7 has a portrait mode which can 

produce Bokeh effect thanks to the dual cameras 

configuration. To compete with iPhone 7, Google recently 

also announced that the latest Google Pixel Phone can take 

photos with Bokeh effect, which would be achieved by 

taking 2 photos at different depths to camera and 

combining then via software. There is a gap that neither of 

two biggest players can achieve Bokeh effect only using a 

single image from a single smartphone camera. In this 

project we seek to fill this gap. We are planning to produce 

a bokeh effect with photos taken using an Android device 

by post processing the photos within the Android device. 

The photos can also come from Photo Stream. The new 

images with Bokeh can be saved into Photo Stream. At the 

core of Bokeh effect production in smartphone 

photography is depth mapping.  A depth map (an estimate 

of depth at each pixel in the photo) is used to identify 

portions of the image that are far away and belong to the 

background and therefore apply a digital blur to the 

background. As mentioned early, Bokeh effect is typically 

present in portrait photos. For non-portrait photos, we are 

seeking to apply cartoon effect on the foreground as a way 

of artistic enhancement.  What’s more, other ways of 

artistic enhancement like changing the background of 

images can also be performed based on the depth map.  

 
Figure 2: examples of artistic enhancement by taking advantage of 

depth map 

 
II.LITERATURE REVIEW 

    In recent years, there are a variety of methods were 

proposed to recover the defocus map from a single image. 

Elder and Zucker [1] used the first and second order 

derivatives of the input image to determine the size of the 

Gaussian blur kernel. Bae and Durand [2] extended their 

work by adding a bilateral filter to remove outliers and 

estimate the blur amount of the whole image. Using 

defocus map, they increased the blurriness of the blurry 

regions and kept the in focus region sharp. Levin et al. [3] 



converted a statistical model to recover defocus map with a 

modified camera. Tai and Brown [4] used local contrast 

prior to measurements into a defocus map and then apply 

MRF propagation to refine the estimated defocus map.  The 

advantage of their method is that it does not rely on 

frequency decomposition of the input image. It only 

compares the local gradients with local contrast. Zhuo and 

Sim [5] generated a full defocus map with good accuracy 

by using matting interpolation. They also discussed a 

method to remove the blur texture ambiguity. In our paper, 

first, we use a Gaussian blur kernel to reblur the image and 

calculate the ratio between the gradients. Secondly, we 

adopt nearest neighbor and matting Laplacian to determine 

the full defocus map. The defocus map is segmented into 

foreground and background. Then, bokeh effect is 

generated by applying blur kernel to further blur the 

background while keep the foreground sharpen. Finally, we 

proposed an algorithm based on bilateral filtering and edge 

detection to add cartoon-like effect on the foreground of the 

input image. 
 

III.ALGORITHM 

3.1 Depth Estimation 
Defocus Blur concept 

When a picture is taken with a camera, portions of the 

image look sharp and portions of the image look blurry 

depending of the depth of the scene.  Portions of the scene 

that lie on the focal plane will look sharp while portions of 

the image that are away from the focal plan will appear 

blurry.  The blurriness is associated with defocus when the 

scene is imaged on camera sensor.  Light rays from points 

in the scene that are in-focus will reach points on the sensor 

whereas light rays from points that are out-of-focus will be 

spread across multiple points on the sensor within an area 

known as circle of confusion [5].  The size (diameter) of 

the circle of confusion is associated with the amount of 

defocus for a given point in the scene and is given by: 
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where fd  is distance between camera lens and focal plane, 

d  is distance between a point in scene to the camera lens, 

0f  is focal length, and N  is stop number of the camera. 

This leads to the out-of-focus points being imaged with a 

blur effect known as defocus blur.  The defocus blur can be 

approximated as a Gaussian blur (with standard-deviation 

db ) which varies with the distance of the object ( d ).  

We use the method described by Zhuo et al [5] to make 

defocus estimation in our project.  In this method a given 

image is re-blurred using a Gaussian kernel with standard-

deviation r .  Gradient magnitude is computed for both 

the original image and the re-blurred image.  The ratio of 

the gradient magnitude ( R ) of the original image to the re-

blurred image is calculated.  The gradient magnitude ratio 

gives a measure of the amount of defocus blur in the image.  

Sharper in-focus objects in the image will result in large R 

values and blurry out-of-focus objects will result in smaller 

R values.  This idea is exploited to estimate defocus blur 

from a single image.  It should be noted that R will reach 

maximum value at edge locations of an image.  Also at 

edge locations, the undesired impact of blurry texture in in-

focus objects on interpretation of R is mitigated.  Thus we 

only examine R value at edge locations in the image by 

performing edge-detection and excluding non-edge regions.  

Finally defocus-blur is estimated as follows: 
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Advantages 

In this method depth can be estimated using a single image 

input, does not require any user intervention, and is fully 

automatic.  Thus this method provides a significant 

advantage in terms of ease of use and applicability 

compared to other depth estimation techniques such as 

those that require multiple images of a scene with modified 

illumination [7], or others that require the user to intervene 

and provide scribbles or a tri-map input [8]. 

 

Gradient-ratio  

We first convert the image to gray-scale to obtain intensity 

map.  We compute gradients in x- and y-directions and take 

the magnitude at every pixel.  We do the same for the re-

blurred image and take gradient-ratio at every pixel.  We 

apply a mild median filter to reduce noise in the gradient 

magnitude 
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Edge-detection 

We perform canny edge-detection on the original image to 

a binary edge map.  To set the lower and upper threshold 

for canny edge detection, we first perform edge detection in 

Matlab with default setting and get threshold values 

generated by Matlab.  We modify this threshold to take 

lower threshold value equal to 85% of upper threshold 

value.  We observed desirable edge detection with these 

settings. 

Sparse Defocus map 

We use the binary edge map to obtain a sparse gradient 

ratio map.  We convert this to sparse Defocus map using 

eq. (3).  This sparse defocus map can still contain 

inaccuracies due to noise and weak edges in the image.  To 



mitigate this we apply a bilateral filter to the sparse defocus 

map.  The bilateral filter reduces noise using a spatial 

Gaussian kernel without heavily blurring the edges.  This is 

achieved by weighting the spatial Gaussian kernel with a 

range Gaussian kernel [8].  The range Gaussian kernel 

works by decreasing the influence of a neighboring pixel 

whose intensity difference relative to the center pixel is 

above/below a certain threshold.  We adopted a bilateral 

filter code developed in [9] for our project.  We extended 

the code to be able to perform bilateral filtering on sparse 

map.  One disadvantage of the bilateral filter is that it is an 

non-linear filter and thus computational expensive relative 

to a linear filter such as Gaussian filter that can be 

efficiently implemented using techniques such as fast 

Fourier transform.  We use a spatial filter σ = 5 and range 

filter σ = 30%. 

Propagation to full defocus map with In-Paint 

The sparse defocus map needs to be propagated thru the 

full image to obtain defocus for every pixel in the image.  

One simple way to achieve this is thru nearest-neighbor 

interpolation.  We first tried griddata/scatteredInterpolant in 

Matlab to interpolate defocus at non-edge regions.  The 

results were not that great.  Sharp transitions and inaccurate 

defocus estimations were observed in several cases.  We 

tried another form of interpolation/extrapolation technique 

known as “inpaint” which seeks to fill missing data in 

images [10].  We adopted the Matlab implementation of 

inpaint in this reference [11].  The inpaint produces better 

interpolation results compared to nearest-neighbor.  In 

some cases the inpaint result was sufficiently good for the 

purpose of multi-level depth segmentation.  However the 

inpaint result often tended to be noisy and did not produce 

a sufficiently fine interpolation of defocus near object 

edges. 

Propagation to full defocus map with Matting-Laplacian 

We also evaluated an approach for interpolation that uses 

the matting-Laplacian matrix ( L ) to obtain full defocus 

map [6].  A matte ( ) for a given image is a transparency 

mask that ranges between 0 and 1 which can be used to 

separate background from foreground.   

iiiii B)(FC   1 , (5) 

where iC  is the RGB image (color components at pixel i), 

iF  is foreground, iB  is background, and i  is the matte.  

L  is an NxN symmetric matrix whose element (i,j) is 

given by 
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where j,i is the Kronecker delta, k  and kR  are the 

mean and covariance matrix of the colors in the local 

window kw , | kw | is the number of pixels in the local 

window, j is pixel index within the local window,   is a 

regularization parameter, and U  is a 3x3 identity matrix.  

A closed-form solution for creating the   matte using 

matting-Laplacian matrix was developed by Levin et al [6] 

and extended by He et al and Pitie [7,12] to provide an 

alternate and efficient implementation for higher resolution 

images.  The key assumption in the Levin model that 

allows for a closed form solution is that   is a linear 

combination of color components in a local window.   
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where ia  = [
R

ia ,
G

ia ,
B

ia ]T is a 3x1 vector and ib  is a 

scalar which are assumed to be constant within the local 

window kw .  Thus   is obtained by minimizing the 

following cost function 
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where   is typically a trimap provided by the user 

indicating with 1 areas which are believed to be 

foreground, with 0 area that are believed to be background, 

and a value between 0 and 1 for areas whose classification 

is fuzzy, D  is a sparse diagonal matrix whose elements 

are 1 for constraint pixels (pixels for which the 

classification is confidently known and to be enforced), and 

  is a scalar that implies additional confidence between 

known   values and the interpolated values.  For our 

problem we replace   with d  which is the full defocus 

map to be estimated,   with sparse depth map 



d  at edge 

locations, and D  with a diagonal matrix whose elements 

are 1 for an edge pixel and 0 otherwise.  A small   value 

is used to keep soft constraint on d .   
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Alternatively optimal value for d  can be obtained by 

solved the following sparse linear system: 


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In this project we adopted a matting Laplacian Matlab code 

developed by Zhuo et al and use Matlab back slash operator 

(\) to solve the sparse linear system. 

Depth map 

So far we have discussed obtaining the defocus map.  The 

defocus blur is directly related to the size of the circle of 

confusion ( db = k * c ).  Combining with eq. (1) one can 

obtain the depth map (distance map) of each pixel in the 

image provided the camera parameter values are known.  

Due to focal plan ambiguity, it is usually assumed that all 



defocussed pixel lie on one side of the focal plane during 

depth estimation.  In this project we simply use the defocus 

map as a proxy for depth map when realizing 

 

3.2Post-processing 

3.2.1Bokeh effect 

    After depth map is available, images can be segmented 

into different segmentations. Theoretically, the more 

segmentation we have, the better Bokeh effects we have. 

However, the resolution of the depth map is not so high that 

there are a lot of unsmooth transition between different 

segmentations.  To achieve Bokeh effects, only 2 segments 

are applied here, resulting in a foreground and background. 

Then the binary masks of the foreground and background 

are obtained. The original RBG image is blurred using a 

Gaussian kernel. The binary mask of the background will 

be applied on the blurred RBG image and the binary mask 

of the foreground will be applied on the original RBG 

image. Finally, the two images are added together to 

produce the image with Bokeh effect.  
    In addition, due to the imperfect segmentation, some 

features on the faces like the eyebrow, jaw and part of the 

hair are usually segmented into background. Since Bokeh 

effect is typically present in portrait photos, face detection 

is applied on the original images. If the face detection is 

positive and meanwhile the average of depth within the 

face region is small, i.e. face on the foreground, no blur 

will be applied regardless of segmentation results. Matlab 

has an image vision toolbox which implements face 

detection function. The function will return the position and 

size of the bounding box covering the face. And the 

bounding box only covers the face but excludes the hair. 

The position and size of the bounding box is adjusted to 

include the hair so that the hair won’t be blurred.  

 

3.2.2 Cartoon 
   First, we use the bilateral filtering to smooth the original 

input image while preserving edges. The popular Canny 

edge detector is employed to get a proper number of edges. 

Then, based on the defocus map, we generate a binarized 

image to separate the foreground from the image. Finally, 

we did the morphological operation on the edges and 

combine the edge map with the smoothed input image.   

 

IV. ANDROID APP 
Information flow 

We built an Android app for this project in order to deploy 

our application on mobile phones and tablets.  The app 

provides an interface for the user to take a picture with the 

mobile device camera, process the image using image 

processing algorithms we described above and display the 

processed image on the mobile device.  Our image 

processing algorithm consists of several processing steps 

including linear filtering, non-linear filtering, solution to a 

sparse yet large linear system, morphological processing, 

etc.  This requires a high amount computational power in 

order to complete the image processing in a reasonable 

amount of time (<1 min).  So we employed a server to 

offload the image processing task.   

Setting up webserver 

We setup a webserver on a Dell 4800 workstation with 

Intel Core i7 processor with 8 cores and 16 GB RAM 

running 64-bit Windows 7.  We setup a webserver using 

WAMP 64-bit software which comes with Apache, 

MySQL, and PHP services.  We setup a local host thru port 

8080 instead of the default port 80 in order to have stable 

performance by avoiding potential conflict with other 

windows system services that might listen to port 80.  We 

also had to make other modifications to both webserver 

configuration and Windows firewall settings in order to 

make the webserver functional.   

Matlab code 

The Matlab code (computeBOKEHLoop.m) on the server 

keeps running in a perpetual loop looking for signal that the 

image has been uploaded and ready for processing.  This 

perpetual loop saves on processing time by eliminating 

Matlab initialization time which can take a few seconds.  

Once Matlab receives signal that the image has been 

uploaded and ready for processing it calls the main function 

(DefocusMap_v8.m) with the input image path and desired 

output image path as input variables.  The function 

computes the defocus map, using which it creates a Bokeh 

map (background blur that varies with depth), finally 

applies a cartoon effect to the foreground subjects, and 

saves the processed image to the output location.  The code 

also creates a signal that the processed image is ready.  We 

adopted this Matlab code from Android tutorial #3 

provided by this class.   

Client-Server communication 

Client (Android App) to server communication is achieved 

by a PHP script that runs on the webserver.  We adopted 

the script from Android tutorial #3.  The PHP script 

(computeBOKEHLoop.php) is first invoked by the Android 

app which passes the location of the input image to the 

PHP script.  The script takes the image from Android 

device and saves it in the root folder of the webserver.  

Along with the image, the PHP script also saves a text file 

containing the location path of the image to signal to 

Matlab that the input image is ready.  After this the PHP 

script waits for signal from Matlab that the processed 

image is ready.  Once the image is ready, script streams the 

image file back to the Android app. 

Android/Java code  

All project members are new to programming in Android.  

We also did not have any experience with programming in 

Java before starting this project.  So it was very challenging 

for us to develop an Android App.  We adopted java codes 

provided by the class as well as codes from online tutorials 



for use in building our app.  We have two different App 

UIs for this project. 

App UI I 

In the first app UI we have a very simple user interface.  

When the app is launched the app title is displayed and 

camera view is enabled.  After setting the right scene the 

image can be captured by pressing the volume up button.  

Once the image is captured, the Android device connects to 

the server and calls the PHP script while passing the 

location of the captured image.   

 
Figure A:  Screen capture of App UI I 

App UI II 

In the second app UI we added the ability for the user to 

either take a picture with the device camera or select an 

existing image file from the device gallery.  The picture 

(either taken with the camera or selected from gallery) is 

displayed in an ImageView frame on the app UI.  We built 

an upload button on the app which may be used to upload 

the image being displayed to server for image processing.  

 
Figure B:  Screen capture of App UI II 

We successfully implemented functionality for the image 

capture button, image select button, and image display 

button.  However we were not able to complete the 

implementation for image upload button due time 

limitation.  

 

DISCUSSION, LIMITATIONS, AND FUTURE 

WORK 

One essential limitation of this methodology of depth 

estimation is the requirement of presence of defocus blur.  

Defocus blur is more pronounced in cameras which have a 

shallow depth of field and is less pronounced in camera 

with a large depth of field.  Usually more expensive 

cameras have shallower depth of field whereas cheaper 

cameras have larger depth of field.  Hence this method will 

tend to be inaccurate and fail in images where the 

background has little defocus blur.  In Fig. C it is seen that 

the face of the mug appear bright in the defocus map 

(darker means nearer and brighter means farther) even 

though the mug is in the foreground.  This is because of the 

inherently blurry texture of the foreground object 

confounding the algorithm.  In Fig. D the image is captured 

inside a length bus using a camera with a large depth of 

field.  As a result even the far regions of the bus are in 

relatively good focus.  This results in poor depth 

estimation. 

 

  
   a)   

   b) 

Figure C:  a) Original image taken on Android camera, b) 

Estimated full defocus map 



 

  
Figure D:  a) Original image inside a length bus, b) 

Estimated full defocus map 

 

To make our Android app useful in cases where the app is 

installed on cell phone cameras with a large depth of field, 

we have attempted to create a gallery selection option in 

our app.  We have tried to implement this feature where the 

user might be able to apply our image processing on 

existing images (taken with other suitable cameras) 

downloaded to the Android device. 

A future work area that would be interesting to examine is 

to try to analytically characterize the conditions in which 

this methodology of estimating depth based on defocus blur 

will be successful.  For example it may be reasoned that if a 

scene with sufficient depth is captured by a camera, the 

captured image will contain a finite level of defocus blur no 

matter what type of lens is used.  A camera with shallow 

depth of field will produce an image with a large amount of 

defocus blur whereas a camera with a large depth of field 

will produce an image with less yet finite amount of 

defocus blur.  So it may further be reasoned that at a certain 

resolution requirement it may be possible to extract defocus 

blur for a large depth of field camera.  So it may be 

possible to derive a relationship between the ability to 

extract defocus blur and camera parameters such as depth 

of field, sensor spatial resolution, sensor bit-depth, etc. 

 
V. RESULTS 
    Inaccurate blur estimation may occurs at weak edges, 

noise or soft features. We solve this problem by applying 

joint bilateral filtering (JBF) on the edge locations.  Sparse 

defocus map is obtained from input Fig. 3a) and here we 

compare the results before and after applying JBF. Fig. 3b) 

shows many bright colored spots randomly distributed 

across the whole image. After applying JBF (fig. 3c), those 

errors are almost completely removed from the defocus 

map while edges are well preserved. Thus, JBF is very 

effective to smooth the sparse defocus map and prevent 

errors propagate in the step of interpolation. We applied 

different methods on the sparse defocus map to obtain the 

full defocus map. It can be seen from original image (fig. 

4a) that the two pumpkins at the lower part of the image 

have much sharper edges compared to the others. After 

that, full defocus maps were obtained by using nearest 

neighbor method (fig. 4b) and matting laplacian (fig. 4c). 

Both estimated full maps can capture continuous change of 

depth. The nearest neighbor method produce coarse 

defocus map and the pumpkins are not well separated with 

the background. In contrast, matting laplacian method is 

able to produce a more accurate defocus map.



 
Figure3: a) input image and sparse defocus maps before (b) and after (c) applying the bilateral filter 

 

 
Figure 4: Obtain defocus map from input image a) by applying nearest neighbor method b) and matting laplacian c). Matting laplacian results in 

defocus map with good accuracy.   

Figure 5 shows the two examples of input images, depth 

map using algorithm from the paper and depth map using 

our own algorithm. The difference between the two depth 

maps is very marginal. However, there are some regions 

that our algorithm shows inferior results compared to the 

ground truth. Fox example, at the center of the flower of 

the first example, depth map using our own algorithm 

shows a slight higher magnitude than some of the 

background. In addition, the white flower in the 2nd image 

shows very strong magnitude (i.e. very far depth).  

     

 

 

 

      



 
Figure 5: input images, depth map using algorithm from the paper [5] and depth map using our own algorithm (from left to right) 
    Here, we are using Figure 6a) as the input image for 

Bokeh post-processing. Figure 6b) displays the foreground 

and background that are segmented based on the depth 

map. Then face detection is applied on this image, and 

Figure 7 a) shows the results of the face detection from 

Matlab. Then, the position and size of the bounding box is 

adjusted to include the hair, as shown in Figure 7b). 

Finally, the Bokeh image with the correction using face 

detection is shown in Figure 7c). As you can see, features 

on the faces like the eyebrow, jaw and part of the hair are 

not blurred anymore.  
    Figure 7c) shows the image after applying Bokeh effect. 

As shown in the figure, the background is successfully 

blurred, while most part of the foreground is well kept.  

 
Figure 6: a) background based on segmentation; b) foreground based on segmentation; c)  image with bokeh effect without face protection 

  
Figure 7: a) Face detection results from Matlab; b) Adjusted Face detection results; c)Bokeh image with face protection 

    We apply bilateral filtering on the input image (fig. 8a) 

to decompose the image into a cartoon-like component (fig. 

3b). Strong edges of the input images (fig. 8c) is obtained 

by using Canny method. Cartoon-like effect can be 

achieved after combining the above two images. In our 

case, we only apply the cartoon effect on the foreground so 

that the portrait in the image is cartooned while preserving 

the background. 

 

 
Figure 8: a) original input image; b) denoised image with JBF; c) 

edge map; d) cartooned image 
 
VI. DISCUSSION, LIMITATIONS AND FUTURE 

WORK 

    Another limitation is the non-smooth transition between 



foreground and background on the output RBG image.  

Figure 9 shows one example of such non-smooth transition.  

The root cause of this transition is due to the different 

levels of blurring between different segmentations. One of 

the future work that the authors are considering to address 

this limitation is to use morphological dilation and erosion 

to extract the outline of the foreground. Then a smooth 

interpolation will be applied for the outline of the 

foreground.  

 
Figure 9: zoom-in of non-smooth transition 

 
    Another future work is to use the small region removal to 

exclude the imperfect segmentation.  
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