
Using Depth Mapping to realize Bokeh effect with a single camera Android device

EE368 Project Report

Authors (SCPD students): Jie Gong, Ran Liu, Pradeep Vukkadala

 Abstract- In this paper we seek to produce a bokeh

effect with a single image taken from an Android device

by post processing. Depth mapping is the core of Bokeh

effect production. A depth map is an estimate of depth

at each pixel in the photo which can be used to identify

portions of the image that are far away and belong to

the background and therefore apply a digital blur to the

background. We present algorithms to determine the

defocus map from a single input image. We obtain a

sparse defocus map by calculating the ratio of gradients

from original image and reblured image. Then, full

defocus map is obtained by propagating values from

edges to entire image by using nearest neighbor method

and matting Laplacian. Based on the defocus map,

foreground and background segmentation is carried

out. We show that by enhancing the blurriness of the

background while preserving the foreground, bokeh

effect is achieved. Finally, we propose an algorithm to

add cartoon-like effect on the input image.

Keyword: bokeh effect; matting Laplacian; defocus map;

cartoon; Android device

I.INTRODUCTION

 Artistic enhancement of photographs is a very popular

field of research with several applications that are common

place in the world of smartphone photography. Recently

researchers have sought to produce an effect known as

Bokeh in smartphone photos using digital image processing

techniques. Bokeh is the shallow-depth of field effect

which blurs the background of portrait photos (typically) to

bring emphasis to the subject in the foreground. Figure 1

shows the same image with and without Bokeh effect.

 Figure 1. image without and with Bokeh effect

 Bokeh effect is usually achieved in high end SLR

cameras using portrait lenses that are relatively large in size

and have a shallow depth of field. It is extremely difficult

to achieve the same effect (physically) in smart phones

which have miniaturized camera lenses and sensors.

However, the latest iPhone 7 has a portrait mode which can

produce Bokeh effect thanks to the dual cameras

configuration. To compete with iPhone 7, Google recently

also announced that the latest Google Pixel Phone can take

photos with Bokeh effect, which would be achieved by

taking 2 photos at different depths to camera and

combining then via software. There is a gap that neither of

two biggest players can achieve Bokeh effect only using a

single image from a single smartphone camera. In this

project we seek to fill this gap. We are planning to produce

a bokeh effect with photos taken using an Android device

by post processing the photos within the Android device.

The photos can also come from Photo Stream. The new

images with Bokeh can be saved into Photo Stream. At the

core of Bokeh effect production in smartphone

photography is depth mapping. A depth map (an estimate

of depth at each pixel in the photo) is used to identify

portions of the image that are far away and belong to the

background and therefore apply a digital blur to the

background. As mentioned early, Bokeh effect is typically

present in portrait photos. For non-portrait photos, we are

seeking to apply cartoon effect on the foreground as a way

of artistic enhancement. What’s more, other ways of

artistic enhancement like changing the background of

images can also be performed based on the depth map.

Figure 2: examples of artistic enhancement by taking advantage of

depth map

II.LITERATURE REVIEW

 In recent years, there are a variety of methods were

proposed to recover the defocus map from a single image.

Elder and Zucker [1] used the first and second order

derivatives of the input image to determine the size of the

Gaussian blur kernel. Bae and Durand [2] extended their

work by adding a bilateral filter to remove outliers and

estimate the blur amount of the whole image. Using

defocus map, they increased the blurriness of the blurry

regions and kept the in focus region sharp. Levin et al. [3]

converted a statistical model to recover defocus map with a

modified camera. Tai and Brown [4] used local contrast

prior to measurements into a defocus map and then apply

MRF propagation to refine the estimated defocus map. The

advantage of their method is that it does not rely on

frequency decomposition of the input image. It only

compares the local gradients with local contrast. Zhuo and

Sim [5] generated a full defocus map with good accuracy

by using matting interpolation. They also discussed a

method to remove the blur texture ambiguity. In our paper,

first, we use a Gaussian blur kernel to reblur the image and

calculate the ratio between the gradients. Secondly, we

adopt nearest neighbor and matting Laplacian to determine

the full defocus map. The defocus map is segmented into

foreground and background. Then, bokeh effect is

generated by applying blur kernel to further blur the

background while keep the foreground sharpen. Finally, we

proposed an algorithm based on bilateral filtering and edge

detection to add cartoon-like effect on the foreground of the

input image.

III.ALGORITHM

3.1 Depth Estimation
Defocus Blur concept

When a picture is taken with a camera, portions of the

image look sharp and portions of the image look blurry

depending of the depth of the scene. Portions of the scene

that lie on the focal plane will look sharp while portions of

the image that are away from the focal plan will appear

blurry. The blurriness is associated with defocus when the

scene is imaged on camera sensor. Light rays from points

in the scene that are in-focus will reach points on the sensor

whereas light rays from points that are out-of-focus will be

spread across multiple points on the sensor within an area

known as circle of confusion [5]. The size (diameter) of

the circle of confusion is associated with the amount of

defocus for a given point in the scene and is given by:

)fd(N

f

d

|dd|
c

f

f

0

2

0




 (1)

where fd is distance between camera lens and focal plane,

d is distance between a point in scene to the camera lens,

0f is focal length, and N is stop number of the camera.

This leads to the out-of-focus points being imaged with a

blur effect known as defocus blur. The defocus blur can be

approximated as a Gaussian blur (with standard-deviation

db) which varies with the distance of the object (d).

We use the method described by Zhuo et al [5] to make

defocus estimation in our project. In this method a given

image is re-blurred using a Gaussian kernel with standard-

deviation r . Gradient magnitude is computed for both

the original image and the re-blurred image. The ratio of

the gradient magnitude (R) of the original image to the re-

blurred image is calculated. The gradient magnitude ratio

gives a measure of the amount of defocus blur in the image.

Sharper in-focus objects in the image will result in large R

values and blurry out-of-focus objects will result in smaller

R values. This idea is exploited to estimate defocus blur

from a single image. It should be noted that R will reach

maximum value at edge locations of an image. Also at

edge locations, the undesired impact of blurry texture in in-

focus objects on interpretation of R is mitigated. Thus we

only examine R value at edge locations in the image by

performing edge-detection and excluding non-edge regions.

Finally defocus-blur is estimated as follows:

2

22

db

rdb

r |C|

|C|
R



 





 (2)

1

1

2 


R|
db (3)

Advantages

In this method depth can be estimated using a single image

input, does not require any user intervention, and is fully

automatic. Thus this method provides a significant

advantage in terms of ease of use and applicability

compared to other depth estimation techniques such as

those that require multiple images of a scene with modified

illumination [7], or others that require the user to intervene

and provide scribbles or a tri-map input [8].

Gradient-ratio

We first convert the image to gray-scale to obtain intensity

map. We compute gradients in x- and y-directions and take

the magnitude at every pixel. We do the same for the re-

blurred image and take gradient-ratio at every pixel. We

apply a mild median filter to reduce noise in the gradient

magnitude

22

yx CC||)y,x(C||  (4)

Edge-detection

We perform canny edge-detection on the original image to

a binary edge map. To set the lower and upper threshold

for canny edge detection, we first perform edge detection in

Matlab with default setting and get threshold values

generated by Matlab. We modify this threshold to take

lower threshold value equal to 85% of upper threshold

value. We observed desirable edge detection with these

settings.

Sparse Defocus map

We use the binary edge map to obtain a sparse gradient

ratio map. We convert this to sparse Defocus map using

eq. (3). This sparse defocus map can still contain

inaccuracies due to noise and weak edges in the image. To

mitigate this we apply a bilateral filter to the sparse defocus

map. The bilateral filter reduces noise using a spatial

Gaussian kernel without heavily blurring the edges. This is

achieved by weighting the spatial Gaussian kernel with a

range Gaussian kernel [8]. The range Gaussian kernel

works by decreasing the influence of a neighboring pixel

whose intensity difference relative to the center pixel is

above/below a certain threshold. We adopted a bilateral

filter code developed in [9] for our project. We extended

the code to be able to perform bilateral filtering on sparse

map. One disadvantage of the bilateral filter is that it is an

non-linear filter and thus computational expensive relative

to a linear filter such as Gaussian filter that can be

efficiently implemented using techniques such as fast

Fourier transform. We use a spatial filter σ = 5 and range

filter σ = 30%.

Propagation to full defocus map with In-Paint

The sparse defocus map needs to be propagated thru the

full image to obtain defocus for every pixel in the image.

One simple way to achieve this is thru nearest-neighbor

interpolation. We first tried griddata/scatteredInterpolant in

Matlab to interpolate defocus at non-edge regions. The

results were not that great. Sharp transitions and inaccurate

defocus estimations were observed in several cases. We

tried another form of interpolation/extrapolation technique

known as “inpaint” which seeks to fill missing data in

images [10]. We adopted the Matlab implementation of

inpaint in this reference [11]. The inpaint produces better

interpolation results compared to nearest-neighbor. In

some cases the inpaint result was sufficiently good for the

purpose of multi-level depth segmentation. However the

inpaint result often tended to be noisy and did not produce

a sufficiently fine interpolation of defocus near object

edges.

Propagation to full defocus map with Matting-Laplacian

We also evaluated an approach for interpolation that uses

the matting-Laplacian matrix (L) to obtain full defocus

map [6]. A matte () for a given image is a transparency

mask that ranges between 0 and 1 which can be used to

separate background from foreground.

iiiii B)(FC   1 , (5)

where iC is the RGB image (color components at pixel i),

iF is foreground, iB is background, and i is the matte.

L is an NxN symmetric matrix whose element (i,j) is

given by

|w|

)C(U
|w|

R)C(

L
k

kj

k

k

T

ki

wj,i|k

j,ij,i

k


























1

1
 (6)

where j,i is the Kronecker delta, k and kR are the

mean and covariance matrix of the colors in the local

window kw , | kw | is the number of pixels in the local

window, j is pixel index within the local window,  is a

regularization parameter, and U is a 3x3 identity matrix.

A closed-form solution for creating the  matte using

matting-Laplacian matrix was developed by Levin et al [6]

and extended by He et al and Pitie [7,12] to provide an

alternate and efficient implementation for higher resolution

images. The key assumption in the Levin model that

allows for a closed form solution is that  is a linear

combination of color components in a local window.

ii

T

ii bCa  , (7)

where ia = [
R

ia ,
G

ia ,
B

ia]T is a 3x1 vector and ib is a

scalar which are assumed to be constant within the local

window kw . Thus  is obtained by minimizing the

following cost function

)(D)(L)(E TT   (8)

where  is typically a trimap provided by the user

indicating with 1 areas which are believed to be

foreground, with 0 area that are believed to be background,

and a value between 0 and 1 for areas whose classification

is fuzzy, D is a sparse diagonal matrix whose elements

are 1 for constraint pixels (pixels for which the

classification is confidently known and to be enforced), and

 is a scalar that implies additional confidence between

known  values and the interpolated values. For our

problem we replace  with d which is the full defocus

map to be estimated,  with sparse depth map



d at edge

locations, and D with a diagonal matrix whose elements

are 1 for an edge pixel and 0 otherwise. A small  value

is used to keep soft constraint on d .

)dd(D)dd(Ldd)d(E TT


  (9)

Alternatively optimal value for d can be obtained by

solved the following sparse linear system:



 dDd)DL( (10)

In this project we adopted a matting Laplacian Matlab code

developed by Zhuo et al and use Matlab back slash operator

(\) to solve the sparse linear system.

Depth map

So far we have discussed obtaining the defocus map. The

defocus blur is directly related to the size of the circle of

confusion (db = k * c). Combining with eq. (1) one can

obtain the depth map (distance map) of each pixel in the

image provided the camera parameter values are known.

Due to focal plan ambiguity, it is usually assumed that all

defocussed pixel lie on one side of the focal plane during

depth estimation. In this project we simply use the defocus

map as a proxy for depth map when realizing

3.2Post-processing

3.2.1Bokeh effect

 After depth map is available, images can be segmented

into different segmentations. Theoretically, the more

segmentation we have, the better Bokeh effects we have.

However, the resolution of the depth map is not so high that

there are a lot of unsmooth transition between different

segmentations. To achieve Bokeh effects, only 2 segments

are applied here, resulting in a foreground and background.

Then the binary masks of the foreground and background

are obtained. The original RBG image is blurred using a

Gaussian kernel. The binary mask of the background will

be applied on the blurred RBG image and the binary mask

of the foreground will be applied on the original RBG

image. Finally, the two images are added together to

produce the image with Bokeh effect.
 In addition, due to the imperfect segmentation, some

features on the faces like the eyebrow, jaw and part of the

hair are usually segmented into background. Since Bokeh

effect is typically present in portrait photos, face detection

is applied on the original images. If the face detection is

positive and meanwhile the average of depth within the

face region is small, i.e. face on the foreground, no blur

will be applied regardless of segmentation results. Matlab

has an image vision toolbox which implements face

detection function. The function will return the position and

size of the bounding box covering the face. And the

bounding box only covers the face but excludes the hair.

The position and size of the bounding box is adjusted to

include the hair so that the hair won’t be blurred.

3.2.2 Cartoon
 First, we use the bilateral filtering to smooth the original

input image while preserving edges. The popular Canny

edge detector is employed to get a proper number of edges.

Then, based on the defocus map, we generate a binarized

image to separate the foreground from the image. Finally,

we did the morphological operation on the edges and

combine the edge map with the smoothed input image.

IV. ANDROID APP
Information flow

We built an Android app for this project in order to deploy

our application on mobile phones and tablets. The app

provides an interface for the user to take a picture with the

mobile device camera, process the image using image

processing algorithms we described above and display the

processed image on the mobile device. Our image

processing algorithm consists of several processing steps

including linear filtering, non-linear filtering, solution to a

sparse yet large linear system, morphological processing,

etc. This requires a high amount computational power in

order to complete the image processing in a reasonable

amount of time (<1 min). So we employed a server to

offload the image processing task.

Setting up webserver

We setup a webserver on a Dell 4800 workstation with

Intel Core i7 processor with 8 cores and 16 GB RAM

running 64-bit Windows 7. We setup a webserver using

WAMP 64-bit software which comes with Apache,

MySQL, and PHP services. We setup a local host thru port

8080 instead of the default port 80 in order to have stable

performance by avoiding potential conflict with other

windows system services that might listen to port 80. We

also had to make other modifications to both webserver

configuration and Windows firewall settings in order to

make the webserver functional.

Matlab code

The Matlab code (computeBOKEHLoop.m) on the server

keeps running in a perpetual loop looking for signal that the

image has been uploaded and ready for processing. This

perpetual loop saves on processing time by eliminating

Matlab initialization time which can take a few seconds.

Once Matlab receives signal that the image has been

uploaded and ready for processing it calls the main function

(DefocusMap_v8.m) with the input image path and desired

output image path as input variables. The function

computes the defocus map, using which it creates a Bokeh

map (background blur that varies with depth), finally

applies a cartoon effect to the foreground subjects, and

saves the processed image to the output location. The code

also creates a signal that the processed image is ready. We

adopted this Matlab code from Android tutorial #3

provided by this class.

Client-Server communication

Client (Android App) to server communication is achieved

by a PHP script that runs on the webserver. We adopted

the script from Android tutorial #3. The PHP script

(computeBOKEHLoop.php) is first invoked by the Android

app which passes the location of the input image to the

PHP script. The script takes the image from Android

device and saves it in the root folder of the webserver.

Along with the image, the PHP script also saves a text file

containing the location path of the image to signal to

Matlab that the input image is ready. After this the PHP

script waits for signal from Matlab that the processed

image is ready. Once the image is ready, script streams the

image file back to the Android app.

Android/Java code

All project members are new to programming in Android.

We also did not have any experience with programming in

Java before starting this project. So it was very challenging

for us to develop an Android App. We adopted java codes

provided by the class as well as codes from online tutorials

for use in building our app. We have two different App

UIs for this project.

App UI I

In the first app UI we have a very simple user interface.

When the app is launched the app title is displayed and

camera view is enabled. After setting the right scene the

image can be captured by pressing the volume up button.

Once the image is captured, the Android device connects to

the server and calls the PHP script while passing the

location of the captured image.

Figure A: Screen capture of App UI I

App UI II

In the second app UI we added the ability for the user to

either take a picture with the device camera or select an

existing image file from the device gallery. The picture

(either taken with the camera or selected from gallery) is

displayed in an ImageView frame on the app UI. We built

an upload button on the app which may be used to upload

the image being displayed to server for image processing.

Figure B: Screen capture of App UI II

We successfully implemented functionality for the image

capture button, image select button, and image display

button. However we were not able to complete the

implementation for image upload button due time

limitation.

DISCUSSION, LIMITATIONS, AND FUTURE

WORK

One essential limitation of this methodology of depth

estimation is the requirement of presence of defocus blur.

Defocus blur is more pronounced in cameras which have a

shallow depth of field and is less pronounced in camera

with a large depth of field. Usually more expensive

cameras have shallower depth of field whereas cheaper

cameras have larger depth of field. Hence this method will

tend to be inaccurate and fail in images where the

background has little defocus blur. In Fig. C it is seen that

the face of the mug appear bright in the defocus map

(darker means nearer and brighter means farther) even

though the mug is in the foreground. This is because of the

inherently blurry texture of the foreground object

confounding the algorithm. In Fig. D the image is captured

inside a length bus using a camera with a large depth of

field. As a result even the far regions of the bus are in

relatively good focus. This results in poor depth

estimation.

 a)

 b)

Figure C: a) Original image taken on Android camera, b)

Estimated full defocus map

Figure D: a) Original image inside a length bus, b)

Estimated full defocus map

To make our Android app useful in cases where the app is

installed on cell phone cameras with a large depth of field,

we have attempted to create a gallery selection option in

our app. We have tried to implement this feature where the

user might be able to apply our image processing on

existing images (taken with other suitable cameras)

downloaded to the Android device.

A future work area that would be interesting to examine is

to try to analytically characterize the conditions in which

this methodology of estimating depth based on defocus blur

will be successful. For example it may be reasoned that if a

scene with sufficient depth is captured by a camera, the

captured image will contain a finite level of defocus blur no

matter what type of lens is used. A camera with shallow

depth of field will produce an image with a large amount of

defocus blur whereas a camera with a large depth of field

will produce an image with less yet finite amount of

defocus blur. So it may further be reasoned that at a certain

resolution requirement it may be possible to extract defocus

blur for a large depth of field camera. So it may be

possible to derive a relationship between the ability to

extract defocus blur and camera parameters such as depth

of field, sensor spatial resolution, sensor bit-depth, etc.

V. RESULTS
 Inaccurate blur estimation may occurs at weak edges,

noise or soft features. We solve this problem by applying

joint bilateral filtering (JBF) on the edge locations. Sparse

defocus map is obtained from input Fig. 3a) and here we

compare the results before and after applying JBF. Fig. 3b)

shows many bright colored spots randomly distributed

across the whole image. After applying JBF (fig. 3c), those

errors are almost completely removed from the defocus

map while edges are well preserved. Thus, JBF is very

effective to smooth the sparse defocus map and prevent

errors propagate in the step of interpolation. We applied

different methods on the sparse defocus map to obtain the

full defocus map. It can be seen from original image (fig.

4a) that the two pumpkins at the lower part of the image

have much sharper edges compared to the others. After

that, full defocus maps were obtained by using nearest

neighbor method (fig. 4b) and matting laplacian (fig. 4c).

Both estimated full maps can capture continuous change of

depth. The nearest neighbor method produce coarse

defocus map and the pumpkins are not well separated with

the background. In contrast, matting laplacian method is

able to produce a more accurate defocus map.

Figure3: a) input image and sparse defocus maps before (b) and after (c) applying the bilateral filter

Figure 4: Obtain defocus map from input image a) by applying nearest neighbor method b) and matting laplacian c). Matting laplacian results in

defocus map with good accuracy.

Figure 5 shows the two examples of input images, depth

map using algorithm from the paper and depth map using

our own algorithm. The difference between the two depth

maps is very marginal. However, there are some regions

that our algorithm shows inferior results compared to the

ground truth. Fox example, at the center of the flower of

the first example, depth map using our own algorithm

shows a slight higher magnitude than some of the

background. In addition, the white flower in the 2nd image

shows very strong magnitude (i.e. very far depth).

Figure 5: input images, depth map using algorithm from the paper [5] and depth map using our own algorithm (from left to right)
 Here, we are using Figure 6a) as the input image for

Bokeh post-processing. Figure 6b) displays the foreground

and background that are segmented based on the depth

map. Then face detection is applied on this image, and

Figure 7 a) shows the results of the face detection from

Matlab. Then, the position and size of the bounding box is

adjusted to include the hair, as shown in Figure 7b).

Finally, the Bokeh image with the correction using face

detection is shown in Figure 7c). As you can see, features

on the faces like the eyebrow, jaw and part of the hair are

not blurred anymore.
 Figure 7c) shows the image after applying Bokeh effect.

As shown in the figure, the background is successfully

blurred, while most part of the foreground is well kept.

Figure 6: a) background based on segmentation; b) foreground based on segmentation; c) image with bokeh effect without face protection

Figure 7: a) Face detection results from Matlab; b) Adjusted Face detection results; c)Bokeh image with face protection

 We apply bilateral filtering on the input image (fig. 8a)

to decompose the image into a cartoon-like component (fig.

3b). Strong edges of the input images (fig. 8c) is obtained

by using Canny method. Cartoon-like effect can be

achieved after combining the above two images. In our

case, we only apply the cartoon effect on the foreground so

that the portrait in the image is cartooned while preserving

the background.

Figure 8: a) original input image; b) denoised image with JBF; c)

edge map; d) cartooned image

VI. DISCUSSION, LIMITATIONS AND FUTURE

WORK

 Another limitation is the non-smooth transition between

foreground and background on the output RBG image.

Figure 9 shows one example of such non-smooth transition.

The root cause of this transition is due to the different

levels of blurring between different segmentations. One of

the future work that the authors are considering to address

this limitation is to use morphological dilation and erosion

to extract the outline of the foreground. Then a smooth

interpolation will be applied for the outline of the

foreground.

Figure 9: zoom-in of non-smooth transition

 Another future work is to use the small region removal to

exclude the imperfect segmentation.

VII.ACKNOWLEDGEMENT

 Mr. Jean-Baptiste Boin’s supports during the project are

highly appreciated.

VIII.REFERENCES

[1] J. Elder, S. Zucker, Local scale control for edge

detection and blur estimation, IEEE Trans. Pattern Anal.

Mach. Intell. 20 (7) (1998) 699-716.
[2] S. Bae, F. Durand, Defocus magnification, Proc.

Eurographics (2007) 571-579.

[3] A. Levin, R. Fergus, F. Durand, and W. T. Freeman.

Image and depth from a conventional camera with a coded

aperture. ACM Trans. Graphics, 2007.
[4] Y.-W. Tai, M. S. Brown, Single image defocus map

estimation using local contrast prior, in: Proc. ICIP, 2009.
[5] Zhuo, Shaojie, and Terence Sim. "Defocus map

estimation from a single image." Pattern Recognition 44.9

(2011): 1852-1858.
[6] Levin, Anat, Dani Lischinski, and Yair Weiss. "A

closed-form solution to natural image matting." IEEE

Transactions on Pattern Analysis and Machine Intelligence

30.2 (2008): 228-242.
[7] Scharstein, Daniel, and Richard Szeliski. "High-

accuracy stereo depth maps using structured light."

Computer Vision and Pattern Recognition, 2003.

Proceedings. 2003 IEEE Computer Society Conference on.

Vol. 1. IEEE, 2003.
[7] Kaiming He, C. Rhemann, C. Rother, Xiaoou Tang, and
Jian Sun, “A global sampling method for alpha matting,”
in Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, June 2011, pp. 2049–2056.
[8] Fast bilateral filtering for the display of high-dynamic-

range images Durand and Dorsey ACM SIGGRAPH

conference (c) 2002
[9] C. Tomasi and R. Manduchi. Bilateral Filtering for

Gray and Color Images. In Proceedings of the IEEE

International Conference on Computer Vision, 1998
[10] Damien Garcia. 2010. Robust smoothing of gridded

data in one and higher dimensions with missing values.

Comput. Stat. Data Anal. 54, 4 2010
[11] D’Errico, John (2004). inpaint_nans, MATLAB

Central File Exchange. Retrieved Nov 28, 2016
[12] F. Pitie, "An alternative matting Laplacian," 2016

IEEE International Conference on Image Processing

(ICIP), Phoenix, AZ, USA, 2016

