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Abstract—Anomaly detection algorithm complements human
surveillance in that it is capable of handling both very fast and
large volume of observations. In this report, it is instead used
to evaluate and detect anomalous behavior in video-recorded
extremely slow processes, which can be as challenging for human
perception. Morphological image processing techniques are used
to separate the slowly evolving foreground from the background
in a time sequence of images. By defining the corresponding
metrics of the extracted foreground features and applying an
Bayesian estimator to the sequence within a finite time window,
the probability of the upcoming observation being an anomaly
can be evaluated. Single crystal growth process with optical
floating zone method is used as an example for application.

I. INTRODUCTION

Anomaly detection has wide-spread use in common prac-
tices including surveillance video analysis, fraud detection,
spacial disruption and vital sign monitoring [1]. However,
some of the most labor intensive industry and state-of-the-art
laboratory procedures have yet to fully utilize this application,
sometimes due to slow and subtle accumulative nature of the
processes. Among them, the monitoring of crop growth [2],
food preservation, geological or ecological change [3] and
single crystal growth [4] all share the commonality of a
relatively static background and a slowly evolving foreground
that carries the information of interest. Therefore, by analyzing
the time lapse image sequence of the subject of interest, one
can overcome the weakness of human perception on adiabatic
changes, and promptly identify or even predict the appearance
of an anomalous event.

In this report, we use a single crystal growth time lapse
recorded over an effective duration of ∼300 hours on an
optical floating zone furnace setup in Stanford Institute of
Materials and Energy Sciences (SIMES), to demonstrate the
viability of this frame-by-frame, morphological image process-
ing based anomaly detection algorithm.

Optical floating zone method consists of a material rod (feed
and seed rod), heating elements (lamp filament) and a set of
focusing optics (gold plated mirrors), as indicated in Fig.1(a)
[5]. During an actual growth, the thermal radiation of the
filaments is tightly focused onto the polycrystalline material
rod, thus creating a narrow section of molten zone up to 2500
degree Celsius. Then the material rod is moved downward
adiabatically to have the material molten and recrystalize in a
controlled fashion, releasing any potential structural strain and
retaining impurities inside the liquid phase. When the molten
zone finally travels to the top, the single crystal growth is
then finished. This downshift process is typically extremely

slow at 0.1mm/hour, and requires human attention through
the entire process to monitor the stability of the molten zone,
which is instrumental to achieve high quality final product.
Fig.1(b-f) demonstrates various growth anomalies as a result
of accumulative adiabatic change, captured by a fixed-position
video camera.

II. PARAMETRIZATION AND EXTRACTION OF THE
FOREGROUND

A typical molten zone contains the following key features
that relate closely to its stability and health (Fig.2(a)).

• optical reflectivity (total brightness or intensity)
• zone volume (of the liquid phase, defined by the region

between the upper and lower melt lines)
• center of mass (first moment)
• zone diameter (minima defined as the zone waist)
• eccentricity
• edge gradient/curvature
Each of these metrics represents a unique aspect of the

molten zone. For instance, optical reflectivity is particularly
sensitive to zone destruction and waist change; zone volume
is sensitive to zone overflow, incongruent melting (unmelted
solid breaks into molten zone) and zone shrinkage; center
of mass (CoM) and edge gradient/curvature are sensitive to
change in zone symmetry and zone wobbling.

In order to properly extract all the aforementioned pa-
rameters, separating the foreground molten zone from the
background reflection of heating filaments is critical. In order
to achieve such goal, the following steps are taken on frame-
to-frame.

• find SURF key points for the background frame (frame
0, Fig.2(b)) and the incoming frame (Fig.2(c))

• match the SURF key points and compute the homograph-
ical transform matrix from the incoming frame to the
background frame plane with RANSAC

• transform the incoming frame and align with the back-
ground frame (Fig.2(d))

• subtract the background frame from the incoming frame
• convert the subtracted RGB image to grayscale image

(Fig.3(a))
Because the filament brightness changes from time to time,
before the subtraction, the overall intensity of the incoming
frame is also normalized to the background frame by matching
the average intensity on the upperleft corner where no actively
changing feature is present.
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Fig. 1. Typical floating zone furnace setup and growth snapshots. (a) Illustration of the working principles of the floating zone method. (b) The molten zone
in a normal growth of copper based high temperature superconductor. (c)-(f) Growths that show various zone instabilities: zone overflow, zone wobbling,
incongruent melting, zone shrinking. The anomalous region is boxed in green.
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Fig. 2. Molten zone paramatrization and alignment. (a) Key parameters of
the molten zone. (b) SURF key points on the background frame prior to the
growth. (c) SURF key points for the actual growth frame. (d) Transform and
align the background and actual crystal growth frame.

After the frame alignment, intensity normalization, sub-
traction and grayscale conversion, a series of morphological
operations can be carried out to compute the binary mask
of the molten zone. The main hurdle is the irregular dark
reflection inside the zone, and the bright reflection close to
the zone edge (all likely to mix with the background).

• dilate the grayscale image with a disk of radius 25px
(Fig.3(a) → (b))

• binarize the frame with Ostu’s method (Fig.3(b) → (c))
• flip foreground and background, label the foreground, and

nullify all foreground that is not labeled at 0 (fill in the
holes inside the molten zone) (Fig.3(c) → (d))

• flip the foreground and background again, and erode the
foreground back down by the same size disk used in step
1 (Fig.3(d) → (e))

• use predefined melt line coordinate the crop out the
non-liquid segments, and arrive at the binary mask for

the molten zone (Fig.3(e) → (f)). Thanks to the tight
focusing optics, the vertical position of the melt lines
remain largely unchanged during typical growth

• use differentiation filter to compute the left and right
edges of the molten zone (Fig.3(f) → (g))

• overlay the mask atop the actual frame to visually exam-
ine the agreement (Fig.3(g) → (h))
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Fig. 3. Morphological image processing on a sample frame at +7.2 hours
into the growth. Step by step illustration is stated in the text.

Hence, with the mask of the molten zone generated, several
key metrics defined earlier can be computed. In this particular
example, the following parameters are calculated:

• reflectivity - total pixel intensity count inside the green
box area in Fig.2(a)

• zone volume - total area (zeroth moment) of the molten
zone mask in Fig.3(f)

• center of mass (CoM) - first moment of the molten zone
mask in Fig.3(f)

• zone diameter - distance from the left edge to the right
edge of the molten zone as a function of the vertical
position in Fig.3(f)

• edge gradient - left and right zone edge gradient as a
function of the vertical position
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Fig. 4. Time dependent (a) reflectivity and (b) zone volume change in this particular growth. Red dots are the detected anomalies.
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Fig. 5. Anomaly detection result from the three most representative parameters - reflectivity (blue), zone volume (orange) and center of mass (yellow). (a)
Anomaly probability estimated over time. Curves are offset vertically for clarity. (b) Comparison of the anomaly detection results from the three channels to
the true anomaly identified by human experimenter (purple). ZB - zone broken. W - zone wobbling. IM - incongruent melting. ZS - zone shrinking.

III. ANOMALY DETECTION

Once the zone parameters are extracted per frame, real
time time sequence analysis can be performed to detect the
anomaly or even predict the anomaly by analyzing the sign of
accumulative change. In principle, more complicated Kalman
gain and control input can be included. But just to demonstrate

the principle, Fig.4 shows the anomaly detection result (red
dots) based on a simple constant bayesian estimator. The
demonstration here is a time lapse footage sampled every
24 minutes over the course of ∼ 300 hours. The following
procedures are taken to detect the anomaly:

• define a moving average time window that reflects the



intrinsic time scale of the process (10 hours, or 25 frames
in this case)

• compute the mean and standard deviation of the param-
eter over the define time window before the current time

• compute the probability of the incoming parameter at
current time based on the t-distribution estimated from
the previous step

• if the probability falls below a threshold, classify the
current frame as an anomaly

• take action (might either send out an alert email, or
execute direct control on the hardware motor)

Fig.4 demonstrates the time dependent reflectivity (a) and
volume (b) change over the entire course. The fast periodic
wiggles are results of the sample aliasing from the frame cap-
turing process (the material rods are rotating 3.2 revolutions
per minute). Regardless, the estimator is able to tolerate the
aliasing artifact and pick up most expected anomalies (labeled
by the red dots). It can also be seen that the detection may
also serve as a guide for preventing catastrophic event (zone
breaking). For example, in Fig.4(b), the zone volume sequence
reports repeated anomalies right before both two zone breaking
events usually more than 10 hours ahead of time, which can
earn experimenters precious time to perform correction after
being alerted.

Another handy feature is the indication of tiny (but accu-
mulative) growth parameter changes. The yellow arrows in
Fig.4(b) indicates the time when the experimenter manually
increased the material rod feed speed by just 0.1mm/h, which
is usually hardly perceptible by human in real time. What’s
more intriguing is the observation of the three repeated pat-
terns of ‘speed-increase → zone-wobbling ’, which reveals
the unforeseen underlying causality - with increased material
feed speed, heating power requirement becomes insufficient,
causing zone crystallization in the center thus the wobbling
(forced breaking of the zone center crystallization due to
rotation).

TABLE I
DETECTION RATE COMPARISON.

reflectivity zone volume center of mass total
detection rate 56.6% 68.2% 70.2% 88.1%

To quantify the anomaly detection accuracy, the detection
results are compared with after-fact human-identified anoma-
lies (true anomaly). Fig.5(a) plots the anomaly probability for
three channels (log plot, curves offset vertically for clarity).
After setting their respective anomaly acceptance thresholds,
the positive anomaly detection results are listed in Fig.5(b)
as a function of elapsed time. The purple line on top is
the true anomaly. It suggests that indeed, the canter of mass
(yellow) captures more anomalies from zone wobbling events,
and the reflectivity (blue) is sensitive to more severe events
like disruption in the zone center (zone broken). The zone
volume metric (orange) appears to be a balanced compromise
of the other two metrics.

Fig. 6. Operation panel in live action.

Assuming each positive detection represents a time window
same size as what the previous detection algorithm designated
(see section III, 5 hours each side in this case), the overlap
between the positive detection (from each channel) and the true
anomaly can be computed. Similarly, the combined detection
rate can also be computed by taking OR operation among
the three channels first. The results are summarized in the
following TABLE I.

IV. DEMONSTRATION AND DISCUSSION

Fig.6 demonstrates the program processing the time lapse
frames in real time. When there is an anomaly detected, the
corresponding channel will flick yellow. The center of mass
channel only displays the 50 most recent frames, where red
crosses denotes anomalies. The lower right corner also plots
the vertical profile of the zone diameter and left/right edge
gradient. In this particular frame, the zone is in a wobbling
anomaly, and shows clear eccentric shape. In this scenario, the
left (green) and right (cyan) edge gradients will display clear
deviation from each other, signaling asymmetry in the zone
shape. These features can be utilized in the future to facilitate
further improved accuracy in depicting the zone characters and
instabilities.



While the crystal growth is used as the example in the
report, this technique can be generalized to many other similar
applications involving adiabatically evolving objects of inter-
est. For example, food preservation, climate change, volcanic
activity watch and crop growth monitoring may be promising
application areas.
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