
EE368 Final Report

TJ Melanson

December 2016

1 Introduction

Common feature tracking algorithms, such as SIFT and SURF, are fairly slow
in runtime due to the processing of a large amount of external data. If the
object is sufficiently small, outside noise may throw off the object detection
device without prior knowledge. Machine learning, especially Markov chains,
can use prior knowledge to turn a computationally expensive task into a faster,
stochastic one. This project attempts to implement the mapping portion of
SLAM, i.e. to develop a mobile application that could create a planar grid given
a known reference, then track an object along that grid. In order to constrain
the object field with a fixed camera. the algorithm produced adequately tracks
a cube with image refinement. Opportunities exist to create a better template
for homography estimation than the first image, which will reduce noise in
detecting keypoints, to have a generalized algorithm so a template can be chosen
on Android without further tuning, and to further integration of the masking
region.

2 Procedure

2.1 Initial Shape Estimation via Edge Detection and El-
lipse fitting

To estimate the initial shape of the template, the shape was computed as an
actual geometry. The shape estimation algorithm used OpenCV’s contour es-
timation from Suzuki combined with a conic least-squares estimation method
created by FitzGibbon.

As a prefilter, the template was first denoised via a 3x3 Gaussian kernel
with standard variance. Then, a Canny edge detector was used to find the
image binary. To find the optimal threshold, the upper threshold was kept at
2.5 times the lower threshold. The lower threshold was first placed at 10, then
increased by 10 until all images could detect the shape in question. In the case
of the experiment, the optimal lower threshold was 50, and upper threshold was
125.

1



The contour fitting took the edge map and translated it to a series of points
rather than a binary image. This allows the shape fitting algorithms to more
easily process the shapes (as the edge points are explicit rather than implicit).

In short, the conic fitting method takes the contour points, and estimates
the conic shape (in this case, an ellipse) that minimized the linear distance
between the shape and the sets of points. Similar to a Hough transform, it fits
a shape to the set of points. However, it uses regression of parameters instead
of a most-likely estimate in a discrete parameter set.

Initially, the goal was to use Hough transforms to create a set of lines, then
use RANSAC to determine the rectangle. However, Hough transforms could
not accurately find all four edges without extraneous noise. In addition, the
lines would have to be chosen such that exactly two sets of two lines were
approximately parallel, and those two sets were perpendicular to each other,
which proved less practical in implementation. To estimate a full 2-D curve,
sufficient parameters (in this case, 5) for the curve would need to be placed into
the Hough transform. In this case, using least-squares fitting becomes simpler,
both in terms of complexity and space usage.

2.2 Testing the Kalman Filter with Simple Ellipse Esti-
mation

Because the homography estimation can be prone to error, the Kalman filter
for the image parameters was first used purely against the geometry of the
detected ellipse. Instead of the homography vector ~hk, there was a geometry
vector ~xk = x, y, w, h, θ, where (x, y) is the center of the shape, w,h are the
width and height, and θ is the shape angle. Because the eraser in the image was
a prominent feature in the background, the shape in question was estimated as
the largest detected shape in the image.

2.3 The Kalman filter

The Kalman filter is divided into two steps: a prediction and an estimation.
The prediction value of the filter relies on the previous estimate. In this case ,
the predicted value is the expected value of the previous rate of change plus a
random walk, which is simply the value of the previous estimate (as we assume
the walk is zero-mean). In other words, the prediction equation can be modeled
as follows:

v̄P,k+1 = v̄E,k + E{w} = v̄k

where v̄P,k+1 is the average value of the velocity at the prediction stage of
iteration k + 1, and v̄k is the estimation stage expected value of the current
iteration.
In the estimate step, the Kalman filter uses the estimate zk to get a better
estimate of the actual state. According to the Kalman filter, the estimation

2



stage updates the estimated value according to a gain G, the measurement, and
the prediction stage:

v̂E,k = v̂P,k +G(zk − v̂P,k) = v̂P,k +Gαk

where v̂E,k is the estimated value of vk at the estimation stage, v̂P,k is the
estimated value at the prediction stage.

The optimal value of G is determined based on the estimated variance and
the updated noise variance:

G =
1

1 +
σ2
w

σ2
P

The variance of the update noise, σ2
w, is assumed constant. The prediction

noise σ2
P , however, is the result of two errors: the estimation error noise and the

measurement noise. Because these two values are independent of each other,
the noise can be described as the sum of the noise variances:

σ2
P = σ2

E + σ2
v

σ2
E was determined recursively starting from 0, and σ2

v was determined as
the difference between the overall variance of the measurement error minus the
variances of the noise and prediction.

2.4 State Model of the Experiment

For this project, the state model used was the discrete rate of change between
the homography parameters of the current frame and the previous frame. In
other words, the current measurement for the stage zk is defined by:

zk = ~hk − ~hk+1

where ~hk is the vector of the eight homography vectors at iteration k, cal-
culated by estimation of the homography at point k.

The hidden variable is the estimated rate of change vk. Because the state is
a vector in this case, the state is now expressed as a vector ~vk. This means that

the predicted value of the homography vector, ~̂hk, is estimated as a sum of the
previous measured homography and the current prediction of the homography
change rate:

~̂hk = ~hk−1 + ~̂vP,k

2.5 Region Masking

Region masking allows the algorithm to make use of the information provided
by the Kalman filter. Because the reference paper did not explicitly mention a
method to rank the most likely regions of the next image, each input frame was

3



masked for feature detection. The resulting descriptor extraction and matching
with the template images came from the modified image features. Although
it could be possible to rank the features by distance from the estimated ho-
mography, the region masking method greatly simplified the image processing
steps.

As a heuristic, the region mask was approximately 1.5x the size of the original
template shape along each dimension, resulting in 2.25x the area of the original
image. This was chosen on two bases: that there would be some error, which
would mean a region exactly the size of the original template image could exclude
important edge features in the current frame; and that the center point would
at least be within the prediction region, which would make the region mask
twice the size of the original frame. Because there was no significant scaling in
the image, the size of the predicted shape was approximated as the size of the
original shape, although the scaling would could be expressed as multiplication
of the size vector by the homography matrix H~s = H{w, h, 0}T .

The key difficulty in implementing region masking was making sure the
keypoint detection was not including the mask edges as keypoints. When just
running the image through a mask before running it through the algorithm, this
would be a major issue, especially since the background color was light. The
issue showed itself when the features detected were along a line inside the shape
of the eraser. To fix this, the mask was provided as an input to the keypoint
detector.

2.6 Determing Error

Error was determined by the accuracy of the predicted geometry versus the
actual geometry of the system. For the majority of the experiment, this error
was determined visually (see the results). The new ellipse geometry was written
on the image, and compared with the location of the shape. However, in order
to quantify the error, the exact centers were hand-chosen via Matlab, and then
compared to the predicted values via the squared L2 norm.

3 Results

In order to test the algorithm without extra noise, the algorithm was tested
on a series of 17 images taken in rapid succession by an Android camera, then
downsampled to a 900 by 500 image. Because it was assumed that the back-
ground of the image was constant, the camera was moved instead of the shape
(an eraser), which simulated translation of the eraser roughly along the negative
y direction.

The Kalman filter was much better at dealing with the noise of the outside
image. In particular, the non-masked feature detector would detect features on
the shadows on the desk, such as one on the upper left corner and those cast by
the eraser. The masked image, however, retained only the features of the shape
itself, resulting in a much more accurate homography estimation.

4



Figure 1: Image at iteration 10. Blue: Kalman filter predicted shape, approxi-
mated as an ellipse. Magenta: Result of pure homography estimation at frame
10. Cyan: using the original region mask as the region mask for the image

Figure 2: Masked image feature matching

Figure 3: Non-masked image feature matching

5



Figure 4: Comparison of three methods of homography with Kalman filter pre-
diction and region masking, region masking based on the first image, and blind
estimation (control).

The second hypothesis was the possible speed increase due to the decrease
in area with which to detect features. To time the functions, the system time in
nanoseconds was recorded just before and after the declaration of the processing
method. The ”masked” method was the final Kalman filtered output, using the
predicted region, while the ”non-masked” method calculated the homography
with a mask the size of the entire image.

Figure 4 shows the error of the algorithms’ estimated center point of the
shape as determined by the squared L2 norm of the distance between the pre-
dicted and a ground truth. The ground truth was determined by manually
finding the center point of the image. The Kalman masking algorithm (blue),
compared to the pure homography estimation (magenta), is near 0 (< 100 square
pixels as opposed to order 104).

One issue that could be raised was the relevance of the Kalman filter to the
improvement. If the region masking was used without using predictive methods,
it would ruin the purpose of the algorithm. Therefore, a third algorithm, which
used the initial mask estimate for all frames, was implemented. As shown in
Figure 4, the region masking alone (cyan) did not significantly improve accuracy
of the algorithm, even after only 2 or 3 frames. This shows that adaptive
prediction was a key factor to the success of the algorithm.

Figure 5: Comparison of homography estimation runtimes with region masking
and without region masking. On average, region masking cut runtime by almost
40%

The average runtime of the masked function was 79.6 ms, while the average

6



runtime of the non-masked function was 127 ms. Although this speed would
still make it a bottleneck in the backend calculations, it shows the potential to
run at almost double the speed of continuous homography estimation.

4 Conclusion

The Kalman filter and region masking algorithm significantly enhanced the ac-
curacy of homography estimation, while providing a strong processing speedup.
The algorithm went beyond that of using the region masking, which did not
significantly increase accuracy alone.

Overall, this algorithm is well suited for real time tracking of an initially
given shape. It is both robust to noise from the outside image, as well as
moderately faster than pure homography estimation via ORB.

7


