
Real Time Perspective Correction of Projector Image
Using Structure Sensor Depth Camera

Duc Nguyen

Abstract

I investigate a new approach for determining the pre-warp homog-
raphy required to correct a projector image for perspective when
projecting on a single flat surface. By using a depth camera placed
at a fixed transform near the projector, the normal of the surface can
be predicted in real time. By updating a homography on the im-
age to be projected based on the projector intrinsics and the surface
normal, the image can be correctly pre-warped in real time. This
allows for applications where the surface and the projector/camera
pair can be moved while the projection remains rectangular and of
the correct aspect ratio when viewed from a position normal to the
image.

1 Introduction and Motivation

In creative coding, augmented reality, and other entertainment ap-
plications, projection onto a non-level, moving surface is of interest
for creating exciting visualization experiences. When the object
surface (the surface on which the image will be projected) orien-
tation with respect to the projector is unknown, image processing
techniques are required to rectify the image for perspective. In or-
der to retrieve the orientation of the object surface, past approaches
have displayed a calibration image and then retrieved the homog-
raphy between the calibration image and a perspective-corrected
target image. With recent advances in depth camera technology, in-
cluding consumer products such as the XBox Kinect, the Structure
Sensor, and the DepthSense, the orientation of the object surface as
well as a correction homography can be computed in real time.

This project presents a procedure for collecting the depth camera
image, preprocessing the image, computing the normal of the object
surface, and applying the correct pre-warp homography. Although
this project focuses only on projection onto a single flat surface, in
the future, it may be expanded to account for arbitrary surfaces as
well. For experimentation, the Structure Sensor depth camera was
used alongside a Sony MP-CL1 projector.

2 Related Work

Existing approaches [1,2,3,4] on this topic can be classified into two
groups: parametric approaches and non-parametric approaches. All
of them involve displaying some sort of calibration image in order
to solve for a desired homography. In the parametric approach, the
image is mapped onto the surface in a texture-mapping like fashion.
Thus, the image will look correct when viewed from a vantage point
normal to the surface and level to the image. In the non-parametric
approach, the displayed image is based on the viewer’s point po-
sition. Due to contours on the object surface, if the viewer walks
away from the predetermined viewing position, the image will ap-
pear distorted.

This project focuses on the parametric approach, and assumes that
the viewer will always be close to normal to the projector screen.

3 Equipment Used

The Structure Sensor is a depth camera manufactured by Occipital
that is capable of capturing 30-60 frames per second. It has a 16:9
aspect ratio with 45 degree vertical FOV. It is precise to 30mm at
3m. By using the OpenNI library, depth images can be extracted
from the device for which each pixel is an integer value representing
the millimeter distance from the image plane.

The projector used is the Sony MP-CL1, which has a zero offset
and 42.1 degree horizontal FOV.

The Structure Sensor is mounted next to the projector with the cen-
ter of its lens 20 mm below the projector lens such that its normal
is equal to that of the projector.

4 Method

An overview of the correction method is presented here, and an
elaboration the steps is provided below:

• Collect 320×240 depth image of scene without object surface

• Predict location of background and floor

• Loop:

– Collect 320 × 240 depth image of scene with object
surface

– Perform necessary preprocessing on depth image

∗ Remove back wall from image

∗ Remove floor from image

∗ Median filter image



– Calculate predicted object surface normal

– Calculate and apply homography on original image

– Render image

4.1 Back Wall and Floor Prediction and Thresholding

In order to isolate the depth image of the object surface, the location
of the background and the floor must be predicted. This is a two step
process in which the background is first predicted and removed, and
then the floor is subsequently predicted and removed. Although the
OpenNI interface used to collect data from the Structure Sensor
already applies basic floor plane clipping, a substantial amount of
additive noise remains in place of the floor which interferes with
the surface normal calculation (see Figure 1). Thus, an approach
[5] adapted from an article written by Petro Soininen and published
on the Microsoft Developer Blog is used. This approach assumes
that the background is close to normal to the image plane.

Figure 1: Unprocessed depth image of scene without object screen.
The image is normalized by max value. The black region at the
bottom of the image is the floor, and the remaining grey region is
the back wall. As can be seen, the noise on the floor plane takes the
form of blotches with large values of uniform depth.

In order to remove the background, a depth image of the scene with-
out the object surface is obtained. Then, for this image, all of the
non-zero pixels in the image are averaged. This average depth value
is used as a prediction of the depth of the back wall. Subsequently,
all pixels falling within a certain distance from this depth are thresh-
olded out (set to zero). Note that this value is only computed once,
and is used for processing on all subsequent frames.

Once the background is removed, a similar approach can be ap-
plied to remove the floor. This time, however, instead of averaging
the depth coordinates, the vertical world coordinate of the pixels
are averaged. This world coordinate (xw, yw, zw) can be obtained
from the image coordinates (x, y, z) as follows:

xw = 2xz tan(
H

2
) (1)

yw = 2yz tan(
V

2
) (2)

zw = z (3)

Figure 2: Depth image with background filtered out. Floor noise
in this image is even greater than that seen in Figure 1.

where H is the horizontal FOV of the depth camera, V is the verti-
cal FOV of the depth camera, and x = 0, y = 0 is the center of the
image.

Once the world coordinates are found for each non-zero pixel, their
yw values are averaged, and the floor is predicted to be located at
this predicted value. In subsequent frames, pixels that fall within a
certain y distance from this value are thresholded out.

Figure 3: Depth image with background and floor thresholded out.
Some noise still remains in some frames due to the depth values
being too high at those locations.

4.2 Median Filtering

After thresholding to remove the back wall and the floor, although
only pixels corresponding to the object surface remain, additional
filtering must be applied. This is because there are still inaccuracies
(salt and pepper noise, depth noise) in the depth measurements on
the object surface. In order to address these inaccuracies, a median
filter is applied to the thresholded image to filter out high frequency
information in the image. Knowing that we only need the low fre-
quency information on the location and orientation the flat object
surface, we can use a fairly large median filter. For this project, a
radius of 7 was used.



Figure 4: Thresholded, median filtered depth image with poster
board on which to be projected in scene.

4.3 Predicting Surface Normal

In order to retrieve the orientation of the object surface, an approach
similar to the one described in [6] is used. For a subsample of non-
zero pixels in the image, a local normal is calculated. This is done
by examining the world coordinates of the pixels above, below, to
the left, and to the right of the pixel for which the normal is being
calculated. Let u be the vector from the world coordinate of the
left pixel to the world coordinate to of the right pixel. Let v be the
vector from the world coordinate of the down pixel to the world
coordinate of the up pixel. Then, the local normal can be computed
as u× v.

Figure 5: Illustration of local normal

Then, each calculated local normal is iteratively grouped into a
plane. If no matching plane for a local normal already exists, then
it begins its own plane. Two local normals Ni and Nj and their
corresponding world coordinates Pi and Pj can be considered to
belong to the same plane if the following two constraints are true:

|(Ni ·Nj)− 1| < ε (4)

|(Pi − Pj) ·Ni| < ε (5)

where ε is some small value (I use .01). These checks are extremely
important for multiple different reasons. The first is that doing this
check allows us to ignore occlusions of the object plane by arbitrary
objects between the depth camera and the object plane. The second
is that remaining pixels in the back wall or on the floor will be
ignored by this check. Finally, noise in the depth image within the
object surface that was not addressed by the median filtering will
also be ignored.

After all local normals have been grouped into a plane, the group
with the highest number of local normals is predicted to be the ob-
ject surface. Then, all of the local normals for this plane are aver-
aged to give the final value of the normal for the object surface.

The subsample for which local normals are calculated can vary, al-
though for this application, the best results were shown for a sub-
sample of pixels of width 3 lying on the two diagonals of the depth
image. Other sampling patterns which were tested were a fully ran-
dom subsampling, and a random subsampling of entire rows and
columns of the image. A number of samples should be chosen
which minimizes the amount of normals needed to be calculated
while providing non-jittery performance. In testing, I used a sub-
sample of size 1200 (about 1.6% of the pixels in the image).

4.4 Image Prewarping

After the object surface normal has been predicted, what remains is
to prewarp the image such that it appears rectangular with the cor-
rect aspect ratio when viewed normal to the image on the surface.
In order to do this, the object surface is simulated in an OpenFrame-
works scene as an infinite plane. Then, the image is texture mapped
onto the object surface with the correct aspect ratio. Finally, the
virtual scene is rendered using a camera with the same intrinsics
as the real life projector. Since the intrinsics for both the simula-
tor camera and the real life projector are the same, the pixels for
the desired image to be projected will land in real life where the
texture-mapped image appears in the simulation (subject to scale).

In other words, let R be the projector matrix, which is equivalent
to the inverse of the camera matrix R−1 = C. We simulate the
object plane in the 3D scene, with the desired rectangular texture
mapping. A point in the 3D scene p = (xs, ys, zs) is then rendered
on the image to be projected at the homogenous coordinate Cp.
Then, when the projector casts the image, since the normal of the
simulated plane matches that of the real life plane, the distance of
each casted pixel is proportional to that of the corresponding pixel
in the simulated scene, thus the real world coordinates of the casted
point p can be written as

w = kRCp (6)
= kp (7)

where w is the real world coordinate of the casted point and k is a
scaling coefficient.

5 Experimental Results

Using this procedure with the Occipital Structure Sensor and the
Sony MP-CL1, I was able to create a system which maintains a
square image on a moving plane, as well as a system which casts a
maintains image on a stationary wall while the projector and sensor
move. Although the system performed well for small amounts of
skew, it seemed to overestimate the incline magnitude for more ex-
treme inclines. Furthermore, mixed incline (horizontal + vertical)
was more likely to produce undesirable results at lower extremes
since error in the horizontal and vertical direction are multiplied.
Included along with the source code are videos of the tests which
demonstrate the real time capabilities of this system. Below are
images collected from the tests.



Picture of the set up. Posterboard used as object surface. Projector
and depth camera at a fixed location with respect to each other

with same rotation and small vertical offset.

Original image to be projected.

Comparison of original vs. corrected casted projection onto a
posterboard with vertical incline with respect to the projector.

Both images taken by an RGB camera from a perspective normal
to the poster board.

Comparison of original vs. corrected casted projection onto a
posterboard with horizontal incline with respect to the projector.
Both images taken by an RGB camera from a perspective normal

to the poster board.

Comparison of original vs. corrected casted projection onto a
posterboard with mixed incline with respect to the projector. Both
images taken by an RGB camera from a perspective normal to the

poster board.

Example of depth image in which the object surface is occluded by
two bottles. Object surface is placed with a horizontal incline with

respect to the projector.



Picture of projection produced from the previous depth image
demonstrates how the occlusions do not affect the final predicted
normal. Object surface is placed with a horizontal incline with

respect to the projector.
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