
 

 

 

I. Introduction 

Steganography is the discipline concerned with 

achieving confidential communication by hiding 

information in plain sight. Media for hiding this 

information include images, video, audio and markup 

languages (Papapanagiotou et al. 2005). Steganographic 

schemes typically exploit information redundancies which 

are not easily perceptible. Digital images tend to exhibit 

such redundancy, and thus are a popular medium for 

steganography. Throughout the years, many different 

methodologies have been proposed in the literature, of 

which steganographic schemes like F5, OutGuess or Yet 

Another Steganographic Scheme (YASS) are a sample. 

While some steganographic techniques operate in the 

primal domain, the majority of newer techniques utilize the 

frequency domain to conceal information. F5, OutGuess 

and YASS occupy this group, embedding the information 

to hide in the image’s discrete cosine transform (DCT) 

coefficients and extending the range of encodable images 

to compressed JPEGs (Hamid et al. 2012). The inverse 

problem of detecting information hidden in plain sight, 

steganalysis, is similarly developed for digital images. For 

instance, Fridrich (2004) used linear discriminant analysis 

to achieve a detection accuracy upwards of 87% on stego-

images encoded with OutGuess. Steganography has 

reached consumers with multiple options present in iOS and 

Android app stores. Typical app features are encoding and 

decoding of images with a private key. PixelKnot and SSE 

for example, use the F5 algorithm to hide text in images. 

However, one of the challenges of mobile platforms is 

limited memory and computation. The range of techniques 

from steganography and steganalysis that can be used 

reliably on mobile devices is restricted. 

 

We present Android software to encode and decode 

stego-images with OutGuess using a secure key, and detect 

whether a digital image is a stego-image encoded with 

OutGuess. Decoding and encoding functions are 

implemented with an emphasis on reliability and quality in 

a mobile setting, while also prioritizing user experience. 

Utilizing machine learning techniques on the DCT of stego-

images encoded with OutGuess, our detector acts as a 

classifier, from which we fit a parameterized model to also 

indicate a confidence in percent. To our knowledge, this 

work adds two novel features to consumer mobile apps: an 

OutGuess encoder/decoder, and a stego-image detector. 

II. Methods 

In order to perform both steganography and steganalysis 

on Android, we harness OpenCv’s image processing 

functionality in Java which is Android compatible. Using 

OpenCv 2.4.13, Android libraries, and standard Java 

libraries, we implemented an Outguess encoder/decoder 

and stego-image detector. 

A. Outguess Encoding/Decoding 

Open source JPEG libraries are written in C. Using open 

source JPEG libraries to manipulate DCT coefficients and 

implement Outguess, then run Outguess on Android would 

require more focus on software pipelines than algorithmic 

development. In the interest of time, we chose to focus on 

algorithmic development and to use OpenCV to read 

images. We then emulate part of the JPEG pipeline. Images 

are first converted to YCrCb color space, then the 8-bit 

unsigned intensity values are centered around zero as 

signed 8-bit values. The DCT of each eight-by-eight pixel 

block is computed and the coefficients are quantized with 

standard quantization matrices (ITU-T T.81). 

The integer-valued DCT coefficients are used for the 

Outguess algorithm as described by Provos and Honeyman 

(2003). The algorithm is depicted in figure 1. In short, a 

password which is shared between sender and recipient is 

hashed with SHA-256 to obtain a seed integer for a pseudo-

random number generator (PRNG). The PRNG determines 

the order in which DCT coefficients are visited. If a selected 

coefficient has a value different from zero or one, its least 

significant bit will be set to that of the next bit to write from 

the message. In this work, a set was added to keep track of 

coefficient indices which have already been visited. This 

avoids corrupting message bits that have already been 

written. Once all message bits have been written, an inverse 

 

Android-Based Digital Image Steganography and Steganalysis 
 

Dominique Piens (dpiens@stanford.edu), Nathan Staffa (staffa@stanford.edu) 

 



 

 

DCT is performed and the resulting stegoimage is saved in 

a lossless compression format. 

 

B. Outguess Steganalysis 

 

General Approach. In order for steganalysis to be used 

on a mobile platform, our approach was to train a machine 

learning classifier using features which are 

computationally-inexpensive to obtain. We restricted the 

choice of model to those implemented in OpenCV in Java, 

namely, support vector machines (SVMs), boosted trees, 

random forests, naive Bayesian classifiers. Using the 

Outguess encoding scheme described above, a training set 

of 8572 images was generated, 4357 of which were 

stegoimages. The stegoimages were generated with 

passwords randomly drawn from a first text with lengths 

from one to 16 characters, and messages randomly drawn 

from a second text with lengths from one to 256 characters. 

The cover images were taken from the Institut National de 

Recherche en Informatique et en Automatique (INRIA) 

Holidays and Copydays datasets, as well as Libor Spacek’s 

facial image dataset. 

Feature Selection. In the literature, two pathways are 

taken to detect Outguess stegoimages. Farid (2002) used 

Fisher linear discriminant analysis to detect stegoimages. 

The features used were image mean, variance, skewness 

and kurtosis for different feature scales, and horizontal, 

vertical and diagonal features extracted with separable 

quadrature mirror filters. Provos and Honeyman (2003) 

expand on Farid’s approach, using the distribution of 

squared differences rather than a wavelet decomposition, 

which extract directional features. Provos and Honeyman 

trained an SVM with the image-statistic-based features, and 

reported a detection accuracy ranging from about 21% to 

96% on Outguess stegoimages, depending on image size. 

The second approach by Fidrich et al. (2002), exploits 

Outguess’ operating in eight by eight pixel blocks, and is 

based on blockiness. Blockiness is a measure of intensity 

discontinuity between neighboring eight by eight pixel 

blocks in an image. It is formally defined as 

 
with M the number of rows, N the number of columns, and 

g the pixel intensities in a channel of the image (Provos and 

Honeyman, 2003). Fidrich et al. establish a linear trend in 

blockiness as a function of the length of messages encoded 

with Outguess. To establish this line, the analyzed image is 

encoded with the maximal length message, then a proxy for 

the image with no encoding is established by compressing 

and cropping the analyzed image. Encoding maximal 

length messages in the proxy for the image with no 

encoding twice, the process is then repeated ten times to 

account for the randomness introduced in Outguess by the 

PRNG. The length of the message encoded in the analyzed 

image can then be obtained accurately. 

In this work, Farid’s approach using image statistics was 

attempted. Given that there are no wavelet transform 

implementation in OpenCv in Java, an edge extraction 

operator (Scharr) was used instead to extract directional 

features. Scale was selected by blurring with a Gaussian 

kernel of different standard deviations. Lastly, image mean, 

standard deviation and central moments are computed for 

each color channel. This approach with four scales led to 

Figure 1. Block diagram of Outguess encoding and decoding. 



 

 

feature vectors of length 324. These vectors were used to 

train machine learning classifiers to predict whether images 

are Outguess stegoimages. 

Fidrich et al.’s approach was also implemented, but 

rather than using the blockiness of five images to predict 

the length of the encoded message, the blockiness of each 

color channel of the same five images are assembled in a 

feature vector. Again, machine learning classifier trained on 

resulting features extracted from the training set. 

Lastly, drawing on Fidrich et al.’s findings that blockiness 

can be used to detect Outguess encoding with high 

precision, a less computationally-expensive approach was 

developed. In this approach, feature vectors only contain 

the blockiness of the original image, and of the original 

image compressed with JPEG and cropped by four pixels 

horizontally and vertically as a proxy for the original image. 

 

 

III. Results 

 
A. Outguess Encoding and Decoding 

The algorithm produces the expected results in most 

instances, however, there is some bit-level corruption in the 

conversion from DCT coefficients to an image. Testing 

suggests that a conversion from 8-bit signed coefficient 

values to 32-bit floating-point values in order to use 

OpenCv’s DCT function is responsible for this corruption. 

There is likely a loss of precision at the level of the least-

significant bit. To remedy this, an alternative DCT library 

could be used, or implemented that would operate on 

integers without conversion to floating-point. Overall, most 

messages input in the app would decode accurately on 

images captured in camera. The observed effect on decoded 

messages is that a minority of characters might be wrongly 

decoded. 

There are also limitations due to the choice of cover 

image. Testing Outguess using a cover image with a digital 

checkerboard pattern resulted in systematic errors in 

decoding. This is due to the image intensities being near 

their extremal values, and some DCT coefficient 

manipulations resulting in intensity changes that are clipped 

as 8-bit unsigned integers. The information being lost, it 

cannot be retrieved when performing the DCT for 

decoding. 

 The limitations outlined here have no significant impact 

on the training set generated for steganalysis since the only 

signal that needs to be detected is least-significant bit 

manipulation of the DCT coefficients. The test set consists 

of natural images, and DCT coefficients have been 

manipulated when intended. Thus, the classification of the 

training set is not impacted by the limitations of the 

implementation of Outguess encoding. 

 

 

 

B. Outguess Steganalysis 

The method mirroring Farid’s image-statistic based 

steganalysis did not result in accurate detection of Outguess 

stegoimages (Farid, 2002). The poor results obtained with 

these features here could be explained by the substitution of 

wavelet-based filtering by a directional edge-detection 

operator or by the choice of classifier. However, the feature 

vectors were large, requiring moderate computation time, 

and one of the classifiers trained here (SVM) was the same 

classifier used by Provos and Honeyman (2003). 

Using the blockiness for five images as described by 

Fidrich et al. resulted in feature extraction which was too 

computationally-expensive to used in a mobile setting 

(Fidrich et al. 2002). Using the features of a subsample of 

100 images from the training set, machine learning 

classifiers showed low prediction accuracy. 

Finally, using the method developed in this work with the 

blockiness of two color images, a SVM with a radial basis 

function kernel was trained to obtain a classification 

accuracy (true-positive and true-negative rates) of 68.5% 

and a false-negative rate of 16.3%. Accuracy was 

determined using non-parametric Bootstrapping, which is 

known to overestimate prediction error (Borra and Di 

Caccio, 2010). Thus, 68.5% accuracy is likely a lower 

bound for the SVM’s detection accuracy. Further testing the 

classifier on 100 images with fixed DCT coefficient 

saturation (ratio of DCT coefficients that are encoded to 

those that could be), coefficient saturations of 0.5% and 1% 

yielded accuracies greater than 92%. Nonetheless, testing 

images encoded on a mobile phone resulted in poor 

detection accuracy. The lower accuracy is likely due to 

messages sizes being very small (less than 20 characters on 

average) in relatively large images. We estimate the 

saturation ratio of those images was below 0.1%. Future 

work would characterize more fully the relation between 

classification accuracy and DCT coefficient saturation. 

 

C. User Experience 

The initial pre-release version of the Android application 

was presented for user testing during a live poster session. 

Users found the app intriguing, and enjoyed mostly stable 

performance, while recommending some potential 

improvements to intuitiveness. While most of the observed 

difficulty in use was due to lack of familiarity with the 

Android environment, a fatal bug was found as well when 

confirming a photo taken from the camera in a different 

orientation. While the solution to this error is known, it has 

not been implemented in the final application. This, along 

with improvements to thread management to allow for a 

clearer representation of the app’s working on encoding and 

decoding, should allow for a much cleaner experience in a 

later version. 

 



 

 

IV. Conclusion 

An Android app featuring Outguess encoding, decoding, 

and detection was implemented in this work using OpenCv 

and Java standard libraries only. Outguess encoding and 

decoding is sometimes unreliable in the app, but might 

easily be remedied by using a different DCT library. Future 

work would also involve further characterization of the 

SVM trained with two-image-blockiness features. 

 

References 

 

[1] Borra, Simone, and Agostino Di Ciaccio. "Measuring the 

prediction error. A comparison of cross-validation, bootstrap 

and covariance penalty methods." Computational statistics & 

data analysis 54, no. 12 (2010): 2976-2989. 

[2] Farid, Hany. "Detecting hidden messages using higher-order 

statistical models." In Image Processing. 2002. Proceedings. 

2002 International Conference on, vol. 2, pp. II-905. IEEE, 

2002. 

[3] Fridrich, Jessica, Miroslav Goljan, and Dorin Hogea. 

"Attacking the outguess." In Proceedings of the ACM 

Workshop on Multimedia and Security, vol. 2002. Juan-les-

Pins, France, 2002. 

[4] Fridrich, Jessica. "Feature-based steganalysis for JPEG 

images and its implications for future design of 

steganographic schemes." In International Workshop on 

Information Hiding, pp. 67-81. Springer Berlin Heidelberg, 

2004. 

[5] Hamid, Nagham, Abid Yahya, R. Badlishah Ahmad, and 

Osamah M. Al-Qershi. "Image steganography techniques: an 

overview." International Journal of Computer Science and 

Security (IJCSS) 6, no. 3 (2012): 168-187. 

[6] Papapanagiotou, Konstantinos, Emmanouel Kellinis, 

Giannis F. Marias, and Panagiotis Georgiadis. "Alternatives 

for multimedia messaging system steganography." In 

International Conference on Computational and Information 

Science, pp. 589-596. Springer Berlin Heidelberg, 2005. 

[7] Provos, Niels, and Peter Honeyman. "Hide and seek: An 

introduction to steganography." IEEE Security & Privacy 1, 

no. 3 (2003): 32-44. 

 

 

 

Appendix 

Author Contributions 

Dominique Piens: Outguess encoding/decoding development and 

improvement, steganalysis development and characterization. 

Nathan Staffa: User Experience development, Outguess 

encoding/decoding improvement, steganalysis characterization. 


