Personalized Image Enhancement

Gregory Luppescu
Electrical Engineering
Stanford University
gluppes @stanford.edu

Abstract—We implement an auto-enhancement framework
that can learn user preferences to enhance images in a per-
sonalized way. Our method finds a maximally representative
training subset (20 images) out of a large dataset, allowing for
efficient training. The parameters chosen in the training phase
can then be applied accordingly to other images in the dataset,
automatically creating an entire library of personally customized
images. To test this method, we performed eight user studies, and
the results suggest that the personalization of image enhancement
parameters is sometimes better than conventional enhancement
methods.

I. INTRODUCTION

Image enhancement is almost always a necessary step after
taking a picture with a digital camera. Many different photo
software packages, like Google Photos or Photoshop, attempt
to automate this process with various auto enhancement tech-
niques. None of these methods, however, take user preference
into account. Social media outlets like Instagram supply their
users with many different types of filters to add some level of
customization, but the user must manually choose a filter every
time he or she uploads a photo. While manually customizing
every image in a library is not a problem for a small amount
of photos, the process can quickly become tedious for larger
photo libraries. In this paper, we implement a system that can
learn a user’s preferences and apply those preferences to the
rest of his or her photo library.

II. RELATED WORK

Image enhancement has been an active field of research,
especially, automatic image enhancement. Kaufman et al.[1]
propose an automatic photo enhancement pipeline that is
content-aware. Unlike other automatic photo enhancement
methods, they take the local semantics of the image into
account and specifically, attempt to enhance faces, blue skies,
and underexposed regions in the image. Celik and Tjahjadi
[2] use Gaussian mixture modeling to model the gray-level
distribution in the image and then, using this distribution,
automatically enhance the contrast of the image. Dale et al. [3]
develop a visual search technique to find the closest images
to the input image from a large web database. The image
enhancement pipeline uses these images to define the input
image’s visual context, and then uses this visual context for a
number of image enhancement operations like white balance,
auto-exposure, and contrast correction. While these methods
try to make the auto enhancement pipeline more content-
aware, they do not address the problem of incorporating user

Raj Shah
Electrical Engineering
Stanford University
shahraj @stanford.edu

i=05a=05 Am15a=05

Output
Qutput

- Inl|l:|lm W oar o8 W] o Inl;:ulm woa

Fig. 1: Example results after applying two different S-curves.
The left image results after applying an S-curve with param-
eters ¢ = 0.5 and A = 0.5. The right image results after
applying an S-curve with parameters a = 0.5 and A = 1.5.

preferences. The work of this project is a modified version of
the method developed in [4].

III. ENHANCEMENT PARAMETERS

We decided to focus on two types of image enhancements:
contrast manipulation and color correction. Contrast manip-
ulation was achieved by applying an S-curve to the images,
and color correction was performed by modifying the color
temperature and the tint of the images.

A. S-Curve

The equation for the S-curve is given as

Fig. 2: Example results after modifying 7" and h

Ja—a(1—%)* ifzx<a 0
Y=a + (1 —a)(¥=2)* otherwise

where a determines the inflection point of the S-curve, A
determines the shape of the S-curve, x is a normalized input
pixel value, and y is a normalized output pixel value. For
A > 1, applying an S-curve maps pixel values that are greater
than a to lower values, and maps pixel values that are less
than a to higher values. For A < 1, the opposite is achieved.
Examples of applying various S-curves to an image are shown
in figure 1.

B. Color Correction

Color correction can be achieved by modifying the color
temperature 7" and the tint h. The color temperature is defined
as the wavelength of light emitted by an ideal blackbody
radiator heated to some temperature, where warmer colors
are more blue, while cooler colors are more red. In essence,
modifying the color temperature of an image simply changes
how warm or cool (blue or red) an image looks. Orthogonal
to color temperature is the tint, which determines the amount
of green in an image. To apply color correction, we simply
calculate

Rout = Rzn - AT
Gout = Gzn + Ah (2)
Bout = an + AT

where R;,, G, and By, are the input RGB values for a
given pixel, AT is the change in color temperature, Ah is
the change in tint, and Ry, Gout, and B, are the output
RGB values for a given pixel. Examples of changing color
temperature and tint are shown in figure 2.

IV. METHODOLOGY
A. Dataset

The dataset used for this project consisted of S00 photos.
The images were selected to represent a typical user photo
library, consisting of a wide variety of contexts. The categories
of photos included rural landscapes, urban areas, faces and
people, bodies of water, etc. The images were taken from [5].

B. Pre-processing

To deal with low quality images in the dataset, all images
were auto enhanced before applying personalized enhance-
ment. The auto enhancement procedure consists of two steps:

1) Auto-white balancing: The images are white-balanced
using the gray-world assumption for the brightest 5% of
pixels. This step uses 3 scaling factors to transform each color
channel.

2) Auto-contrast stretch: Here, we first convert the image
into grayscale and then find intensities I;, and Iy, where I},
is greater than at most 0.4% of the intensities and I is less
than at most 1% of the intensities. Finally, the pixel values are
linearly transformed such that Iy is mapped to O and Iy is
mapped to 1.

C. Distance Metric

One of the critical steps in this project is finding an effective
metric to measure the similarity between a pair of images. The
distance metric is formulated on the basic assumption that if
the images are similar, then their auto enhancement parameters
are also similar. Thus, we define the sum of the absolute
difference between the 5 auto enhancement parameters (found
in section IV-B) for a pair of images as

5
DPUTES (i §) =Y |pik — Pk 3)
k=1

where p;;, is the k" auto enhancement parameter for image 1.
We define our distance metric as

25
DI (i, j) = Y n D™(i,))
n=1

where

i,

24 of the distance metrics we used were the KL Divergence,
L4, Lo, and L., norms of the differences between:

« Two color images

e The R, G, and B histograms of two color images

o The grayscale values of two color images after being

converted to grayscale
o The grayscale histograms of two color images after being
converted to grayscale

The last distance metric is the entropy of the difference
between two color images. To find the value of a*, we used
the BFGS algorithm to minimize the objective function given
in equation 5. In order for equation 5 to be well conditioned,
it was necessary to normalize the individual distance functions
such that they had comparable values. The L; norm and KL
Divergence of the differences of the color images were divided
by 3 * number of pixels. The L; norm and KL Divergence of
the differences of the grayscale images were divided by the
number of pixels. The Ly norm of the differences of the color
images were divided by the square root of 3xnumber of pixels.
The L, norm of the differences of the grayscale images were
divided by the square root of number of pixels. The L; norm
of the differences of histograms were normalized by 256 *
number of pixels, as the number of bins in the histograms was

256. Finally, the Ly norm of the differences of histograms were
normalized by the square root of 256 = number of pixels.

D. Training Set Selection

Since the purpose of this pipeline is to make image per-
sonalization as efficient as possible, it is imperative to have a
small training set to ensure a seamless user experience. Ideally,
each training image would represent a specific category in
the dataset. For instance, if our dataset consisted of images
of faces, cats, and trees, our training set should at least
contain one face, one cat, and one tree. Then, the parameters
chosen for each of these training images would be applied
to all other images within their respective categories. Ideally,
the distance metric learned in IV-C will determine similarity
between images such that images in the same category are
closest to each other. Practically, however, with a large unla-
beled image set containing images not belonging to specific
categories, we must select a training set that is maximally
representative of the dataset. This problem can be interpreted
as a sensor placement problem [6], where the top n sensors
(training images), when combined, share the most amount
of information with the rest of the dataset. To achieve this
objective we employ a greedy selection procedure found in [6],
which considers a Gaussian process with covariance matrix

Dime9es (i,)
D D" (K, 1)

where D!mag9es(j j) is the distance described in IV-C
between images ¢ and j, and NV is the total number of images
in the dataset. The covariance matrix K has an intuitive
interpretation: each entry (4, j) encodes the similarity between
image 7 and image j, where a value of O signifies the two
images are infinitely far apart, and a value of 1 signifies the
images are at the same location in the image space.

As we are employing a greedy algorithm, each selection
step chooses the image that maximizes the gain in mutual
information among the unselected images:

_N?2

k@j = exp

(6)

I" = arg max f () (7)

where
fi)y=MIU —i;SUi) — MI(U —i;5)
1— kg,iK;gksﬂ

- T —1 -~
1- kU*i,iKUfi,UfikU*Ll

In equation (7), MI(x,y) is the mutual information between
x and y [7]. S is the set of images already selected to be a part
of the training set, and U is the set of unselected images. Kg g
is the similarity matrix among images in S, whose values are
calculated according to (6). Ky—; 7—; is the similarity matrix
among images in U excluding image i. Similarly, ks; and
ky—; ; are the similarity vectors between images in .S and U —i
with image <. It can be intuitively seen that if the the similarity
of image ¢ with U — ¢ is high, then the denominator is small.
Conversely, if the similarity of image ¢ with S is low, then the

‘Select Image

Please select the image with the filter settings you most prefer

Training Image: 1

Finsh Training Next Image

Fig. 3: Training GUI implemented in MATLAB

numerator is large. Thus, finding ¢ such that it maximizes f ()
implies that image ¢ is very similar to the unselected images,
but at the same time, dissimilar to selected images, which is
what we are trying to achieve. Greedily finding an image ¢
at each iteration gives us a ranking of images that maximally
represent the dataset. For this project, we choose the top 20
images as our training set. The rationale behind choosing 20
images is to make the training convenient and time-efficient
for the user.

E. Parameter Set Selection

As mentioned in section III, we learn 4 enhancement param-
eters in this project. For each of the enhancement parameters,
we decided to use 3 different values, which gives us a total
of 3* = 81 different parameter combinations for each training
image. The values used for each parameter are listed in table
I. To decide the 3 values per parameter, we applied various
changes to see how resulting images were affected. As was
expected, the more aggressive the change, the more unnatural
the image would look. We ended up choosing parameters
that noticeably changed the images, while keeping the images
looking reasonably natural.

Asking the user to choose the best parameter combination
out of 81 different choices is simply impractical. Hence, we
decided to select an optimal subset of parameter combinations
to make the training process less tedious. To achieve this, per
image, we apply all 81 different parameter combinations and
then use the same sensor placement optimization procedure
in section IV-D to choose the top 8 parameter combinations.
As a result, the 8 parameter combinations found maximally
represent the parameter space for that image. Now, instead
of choosing among 81 versions of the same image, the user
only has to choose between 9 versions: the original auto
enhanced image, and the 8 images enhanced using the selected
parameters.

F. Training

Once the training images and parameter combinations per
training image are selected, the system is ready to learn a

Input image

y (linearize)

Auto-enhance Find the closest
training image

Personalized

enhance (delinearize)

Fig. 4: Image Processing Pipeline to Personally Enhance Newly Added Images

[Parameters | Values |
A 0.75, 1, 1.5
a 0.3, 0.5, 0.7
AT -7.5,0,75
Ah -7.5,0,75

TABLE I: Values used for each parameter

user’s preferences. For training, we implemented a GUI in
MATLAB, which can be seen in figure 3. For each training
image, a user chooses which enhanced photo he or she prefers
the most. The GUI signifies the image chosen by highlighting
it with a green border. The user can traverse the training set
using forward and backward buttons, and can press the ”Check
Selections” button to check which training images still have
unspecified parameter combinations. We tried to make the GUI
very easy to use so that the training phase would be as smooth
as possible. After a user has selected all preferences for each
training image, he or she can click “Finish Training” to save
the preferences chosen.

V. PROCESSING PIPELINE

After the user preferences are learned, all other images
in the dataset can be personally enhanced. The enhancement
pipeline (figure 4) is as follows:
1) Transform the image into the perceptually linear domain
(we used v = 2.2)

2) Auto enhance the image using the procedure described
in IV-B

3) Find the closest training image to the auto enhanced
input image using the distance metric learned in IV-C

4) Get the enhancement parameters chosen by the user
during the training phase associated with the closest
training image

5) Apply these enhancement parameters to the test image

6) Perform the inverse operation from step 1) to produce

the final image

VI. RESULTS

A. Testing Procedure

To test the efficacy of our method, we took 10 test images
from the dataset, each with varying contexts (faces, landscapes,

‘Select Image Select mage

No Proference

Please choose the image you most prefer Nextimag

Fig. 5: Testing GUI implemented in MATLAB

etc.). We enhanced these images three different ways: using
our personalized enhancement method, the Google Photos auto
enhancement feature, and Photoshop’s auto contrast and color
correction tools. We then performed one-on-one comparisons
between the personalized images and the original images,
the personalized images and the Google enhanced images,
and the personalized images and the Photoshop enhanced
images. To perform the comparisons, we created another GUI
in MATLAB which can be seen in figure 5. Note that there is
an option for "No Preference,” as some pairs of images may
be indiscernible from one another.

B. User Study

The results of § user studies can be seen in table II. A little
more than 50% time, users preferred the personalized images
to the original images, had no preference about 20% of the
time, and preferred the original images about a 25% of the
time. These results are very reasonable, as more often then not,
some type of enhancement is better than no enhancement at all.
When compared to Google Photos and Photoshop, our method
also yielded reasonable results, as users preferred personalized
images about 30% of the time, had no preference about 25%
of the time, and preferred the professional enhancement tools
about 45% of the time. Since we are only modifying four
parameters, our method is limited as to how effectively it
can enhance an image. We expect that the auto enhancement
features for Google Photos and Photoshop both modify many
other parameters, which could be one reason why those photos
were preferred a majority of the time. Another source of error
could come from the fact that the learned distance metric is
imperfect. For example, if according to our distance metric

a test image of a face is closer to a training image of a
rural landscape than to a training image of a face, parameters
associated with the training image of the rural landscape
would be applied to the test image of the face, leading to
undesirable enhancement results. We also noticed that people
who preferred more artistic looking photos (like, for instance,
a photo put through an Instagram filter) liked the personalized
results better than the professionally auto enhanced results.
This observation also makes sense, as the professional auto
enhancement algorithms are most likely trying to keep images
looking as natural as possible. Overall, we were pleased with
the results.

Personalization vs. Original

Preferred Personalization | 54.3%
No Preference 18.6%
Preferred Original 27.1%

Personalization vs. Google Photos

Preferred Personalization | 28.6%
No Preference 21.4%
Preferred Google Photos | 50.0%

Personalization vs. Photoshop

Preferred Personalization | 30.0%
No Preference 30.0%
Preferred Photoshop 40.0%

TABLE II: User Study Results

VII. CONCLUSIONS & FUTURE WORK

In this project, we implement an end-to-end pipeline to learn
user preferences to enhance images in a personalized way.
The five major components of this project are: computing a
distance metric, finding a training set that maximally repre-
sents the dataset, finding an optimal parameter set for each
training image, training, and finally, enhancing the images. The
efficiency of this approach lies in the fact that almost all of the
processing can be done offline, so the user is involved only
in a short training phase. To test the validity of this method,
we carried out user studies, and the fact that our method was
preferred over professional software for some images shows
the potential of this approach.

Due to limited time and computational resources, we de-
cided to work with a smaller dataset of images and to also
learn fewer parameters. However, we feel that a larger dataset
of images could yield a more accurate distance metric, which
would in turn yield a training set that is more representative of
the dataset. Also, applying more enhancements and thus, learn-
ing more parameters can help achieve better personalization.
Lastly, exploring different ways of learning distance metrics
and finding training images that hold maximum information
could go a long way in making this pipeline more effective.

ACKNOWLEDGMENT

We would like to thank Prof. Gordon Wetzstein and the TAs
of EE 368 for guiding us through the course of this project
and for providing the necessary resources.

REFERENCES

[1] Liad Kaufman, Dani Lischinski, and Michael Werman.
Content-aware automatic photo enhancement. In Com-
puter Graphics Forum, volume 31, pages 2528-2540.
Wiley Online Library, 2012.

[2] Turgay Celik and Tardi Tjahjadi. Automatic image equal-
ization and contrast enhancement using gaussian mixture
modeling. [EEE Transactions on Image Processing, 21
(1):145-156, 2012.

[3] Kevin Dale, Micah K Johnson, Kalyan Sunkavalli, Wo-
jeiech Matusik, and Hanspeter Pfister. Image restoration
using online photo collections. In 2009 IEEE 12th Interna-
tional Conference on Computer Vision, pages 2217-2224.
IEEE, 2009.

[4] Sing Bing Kang, Ashish Kapoor, and Dani Lischinski. Per-
sonalization of image enhancement. In Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference
on, pages 1799-1806. IEEE, 2010.

[5] Labelme, the open annotation tool.
mit.edu/Release3.0/.

[6] Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-
optimal sensor placements in gaussian processes: Theory,
efficient algorithms and empirical studies. Journal of
Machine Learning Research, 9(Feb):235-284, 2008.

[7] Thomas Cover and Joy Thomas. Elements of Information
Theory. Wiley, New York, 2006.

http://labelme.csail.

