
Evaluating Mathematical Expressions with the
Eyequation Android App

Nico Chaves and Noam Weinberger

Department of Electrical Engineering
Stanford University

I. INTRODUCTION
Optical character recognition (OCR) is an

important technique for solving many technical
problems. As a few examples, OCR has been
used for digitizing books, identifying license
plates, and assisting the vision impaired. In this
report, we present an Android mobile application
called Eyequation that uses OCR to recognize and
evaluate arithmetic expressions. The app could be
used to help students check their solutions to
challenging problems quickly and easily.

While developing Eyequation, we found a
related app called Photomath. The Photomath app
requires the user to manually place a bounding
box around the text of the equation, and we found
the execution time to be somewhat slow (often a
few seconds for a simple expression).
Furthermore, Photomath can only solve a single
equation at a time. Eyequation addresses each of
these shortcomings. Currently, Eyequation can
automatically detect multiple equations on a light
background, display bounding boxes around each
equation, and solve the equations independently.
However, in our experience, Eyequation does not
yet recognize text, particularly handwritten text,
as accurately as Photomath. Furthermore,
Eyequation is currently limited to arithmetic
expressions involving integers 0-9 and the

following characters: “+-()/x”. We plan to address
these issues in our future work.

II. IMPLEMENTATION
The application’s pipeline can be broken up

into six segments: keypoint detection, equation
bounding, thresholding, character recognition,
evaluation, and display.

Figure 1: Pipeline Diagram

A. Keypoint Detection
The first step of the application is to find

text in the image. We assume that the user has
taken an image of dark text on a primarily light
background, which may contain shadows. We
first convert the image to grayscale and detect
maximally stable extremal regions (MSER).
MSER detection searches for regions of an
image that remain relatively stable across
many different thresholds. In other words, it
finds regions that are darker than a certain
value. As that value is increased, those regions
will grow. Regions that do not grow while the
value is significantly increased are those with
much darker (or lighter) values than the region
around them. MSERs are useful features for
text detection because of the strong contrast
between text and background and because of
text’s connectedness . For this stage, we use 1

the implementation of MSER keypoint
detection available in the OpenCV Android 2

library.
In our future work, we plan to remove

noise and shadow before applying MSER. This
would reduce the number of spurious
keypoints found by MSER, resulting in better
bounding boxes around equations in the next
step of the pipeline.

B. Equation Bounding

We use the keypoints detected by MSER
to find image contours using OpenCV’s
implementation of Suzuki’s Border Following

1 ​Chen, Huizhong, et al. “Robust Text Detection in
Natural Images with Edge-Enhanced Maximally Stable
Extremal Regions.” ​Image Processing (ICIP), 18th
IEEE International Conference​ , 2011
2 http://opencv.org

Algorithm , and we construct bounding boxes 3

around them. This provides us with a rectangle
around the text. Depending on the scale of the
image, each rectangle might bound an entire
expression or, in the case of large font with
large gaps in between, it might bound each
character by itself. To deal with the latter case,
we merge rectangles that are close together or
overlapping. In particular, we merge a pair of
rectangles if they are within a fixed vertical
and horizontal offset (which we determined
through trial-and-error experimentation) of
each other. Note that we assume that each
expression is written on a single line.

C. Thresholding

Though the equations have been isolated
into bounding boxes, the boxes may contain
shadows, noise, and other artifacts that could
interfere with character recognition. To
mitigate these artifacts, we perform locally
adaptive thresholding over the entire image
(see Figure 2 for an example). Locally adaptive
thresholding is particularly useful for this
application, because parts of the captured
image are often under different amounts of
shadow (for example, when the phone casts a
shadow over part of the image). For this stage,
we use OpenCV’s implementation of locally
adaptive thresholding. Alternatively, one may
choose to apply thresholding to the interior of
each bounding box individually. However, one
still may need to apply locally adaptive
thresholding to each bounding box, as some
boxes may have non-uniform illumination. We
chose our approach instead because it is

3 ​Suzuki, S. and Abe, K., “Topological Structural
Analysis of Digitized Binary Images by Border
Following.” ​CVGIP 30 1​ , 1985

simpler and it generates satisfactory binarized
images of each expression in practice.

Figure 2a: Final Result under Shadow

Figure 2b: Thresholded Image Generated

from Image with Shadows

D. Character Recognition

The contents of each bounding box are
then sent to the OCR engine. We use the
Tesseract OCR engine, which is an open 4

source project currently supported by Google.
The Tesseract classifier can be run in 2
different modes: (1) an “adaptive classifier”
mode which manually generates a feature
representation of the image to classify
characters and (2) a convolutional neural
network algorithm referred to as Cube. The
neural network mode is slightly more accurate,

4 https://github.com/tesseract-ocr/tesseract/

but it runs more slowly. We determined that 5

the first mode provides satisfactory accuracy
(as long as the input image has been processed
as discussed previously). Furthermore, lower
computational complexity is a high priority for
mobile applications. To increase accuracy, we
set Tesseract to match the text only to the
symbols of interest, i.e. 0-9 and “+-()/x”. We
also set Tesseract to search only for single
lines of text, which reduces its runtime.

E. Evaluation

The OCR engine then sends the
mathematical expression to be evaluated. For
simplicity, we do not support algebra, calculus,
etc. For this stage, we use the lightweight
Javaluator library. First, we preprocess the 6

text recognized by Tesseract (e.g. we convert
artifacts like “--” to “-”). Javaluator then parses
the string and, if it finds that the string is a
valid mathematical expression, calculates the
result.

F. Display

After obtaining the result of the
expression, we overlay the result on the mobile
device’s screen next to the corresponding
equation. Note that we display the captured
image on the device throughout steps A-E as
well. Moreover, we color-code the bounding
boxes to indicate progress. When bounding
boxes are found, we display yellow rectangles
around them, as shown in Figure 3 below. As
the contents of each bounding box is parsed
and evaluated, we change the border color to
green (if the evaluation is successful) or red (if

5 ​Smith, Ray. ​An overview of the Tesseract OCR
engine​ , 2007
6 http://javaluator.sourceforge.net

the evaluation fails due to an OCR or
mathematical syntax error). Note that we
display the result in a sensible location based
on the location of the bounding box itself. If
the bounding box is at the very top of the
screen and doesn’t take up the entire screen,
then we display the solved equation at the
bottom of the box. However, if the bounding
box takes up the entire screen, then we display
the solved equation inside the bounding box.
Displaying the full expression, along with the
result, allows the user to be confident that the
correct expression was indeed recognized.

Figure 3: Yellow display shows that evaluation

is still in progress

III. RESULTS
The application successfully reads, parses,

and evaluates mathematical expressions
accurately and rapidly. It succeeds at assessing
multiple equations simultaneously, even when
they are at different scales, as shown in Figure 4
below. However, the application does fail
occasionally at several points along the pipeline.

Figure 4: Successful result on multiple

equations with different font size

At the beginning of the pipeline, the
application may incorrectly label keypoints or,
more commonly, may incorrectly group keypoints
into bounding boxes. Often this is caused by poor
scaling; when the text in the image takes up the
entire field of view, the spaces between characters
are so large that they are treated separately. The
merging discussed above may not resolve this
issue if the individual bounding boxes differ
greatly along the vertical axis, which is
interpreted as being on different lines of text.
Other times, the opposite issue occurs and
multiple equations are grouped together into a
single bounding box. Again, this is affected by
the scale of the text and of the image overall.
Another error that can result in bounding box
confusion is the detection of non-text keypoints.
For example, if there is a line or border nearby,
this may be grouped together with some text and
corrupt the character recognition.

In all of the above cases, however, the error
can be easily noticed and rectified by the user.
For example, if a bounding box contains non-text
or multiple lines of text that should be separate
equations, this will cause the evaluator to fail and
a red rectangle will display. It will be clear from
the location and contents of the rectangle what
has gone wrong and the user can then re-take the

image slightly closer or farther away or shifted in
order to correct the issue.

Another of the occasional sources of error is
blur, which can be caused by unsteady hands
when the image is taken. This causes the
character recognition engine to misread the text,
as shown in Figure 5 below. However, this error
is also noticeable and fixable by the user. Either
the evaluator will fail, causing the rectangle to
turn red, or the evaluator will “succeed” but
display an incorrect equation. Both cases are
shown in Figure 5.

Figure 5: Errors due to blur

A minor and rare issue arises when results

overlap when they are displayed. If an equation is
at the top of the image, its result is displayed on
the bottom of its bounding box. If another
equation is below it, it is possible that the result
displayed for that equation will overlap the
display of the first. More generally, rectangles
and result displays can collide, causing legibility
difficulties.

Further, the application assumes that the
image satisfies certain conditions; it is inaccurate
when the image is heavily skewed, when the text
is handwritten, or when the equation involves
characters outside of the assumed alphabet. The
heavy skew causes the characters of the equation
to be bounded individually, as shown in Figure 6

below. We chose not to correct for skew since
this would slow down the application and the user
can easily rotate the device to avoid significant
skewing.

Note that a real user will always introduce
some amount of skew. For moderate amounts of
skewing, the bounding box detection still
succeeds. Furthermore, we found that in practice,
Tesseract’s internal de-skewing algorithm already
corrects for a few degrees of skew. Therefore, the
app can tolerate the moderate amounts of skew it
is likely to encounter.

The app can successfully bound handwritten
equations, but the OCR engine was not trained on
handwriting--it was only trained on a set of
approximately 8 “typical” typed fonts.

Figure 6: Error due to skew

When the image is reasonably steady,

well-scaled, correctly oriented, and contains only
typed arithmetic, however, the application works
very well. It is quick, accurate, and robust against
shadows and other noise.

IV. FUTURE WORK
There are several ways that we could expand

upon this project:
We could experiment with different

approaches to bounding equations with

rectangles. For example, we could compare the
performance of different keypoint detectors.

We could also design an evaluator to solve
more complex equations, such as those found in
algebra and calculus, and to train the character
recognition engine to recognize advanced
mathematical symbols. We could even connect
the application with the Wolfram Alpha API , 7

which would enable the user to get a result for
even the most complex expressions.

Another possible improvement is to display
not only the equation and results, but also
intermediate steps in the solution. For example,
explicitly showing carrying and borrowing in
addition and subtraction. This would be a
particularly helpful feature for educational uses.

We could also improve the character
recognition by using an engine trained on
handwriting, implementing many possible
methods, such as those introduced by Zhang, et
al., or by Ali, et al. 8 9

V. ACKNOWLEDGEMENTS

We would like to thank Professor Gordon
Wetzstein for his instruction in Digital Image
Processing this quarter and Jean-Baptiste Boin for
his mentorship and advice throughout this project.

7 https://www.wolframalpha.com
8 ​He Zhang, Jia Liu, Zhengyan Liu, Nan Zhang, Li
Wang, Xinrong Lv, Peng Ren, “A fast handwritten
numeral recognition framework based on peak
densities.” ​Signal and Information Processing
(ChinaSIP), IEEE China Summit and International
Conference​ , 2015
9 ​Syed Salman Ali, Muhammad Usman Ghani,
“Handwritten Digit Recognition Using DCT and HMMs.”
Frontiers of Information Technology (FIT) 12th
International Conference​ , 2014

