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I. INTRODUCTION 
Optical character recognition (OCR) is an      

important technique for solving many technical      
problems. As a few examples, OCR has been        
used for digitizing books, identifying license      
plates, and assisting the vision impaired. In this        
report, we present an Android mobile application       
called Eyequation that uses OCR to recognize and        
evaluate arithmetic expressions. The app could be       
used to help students check their solutions to        
challenging problems quickly and easily. 

While developing Eyequation, we found a      
related app called Photomath. The Photomath app       
requires the user to manually place a bounding        
box around the text of the equation, and we found          
the execution time to be somewhat slow (often a         
few seconds for a simple expression).      
Furthermore, Photomath can only solve a single       
equation at a time. Eyequation addresses each of        
these shortcomings. Currently, Eyequation can     
automatically detect multiple equations on a light       
background, display bounding boxes around each      
equation, and solve the equations independently.      
However, in our experience, Eyequation does not       
yet recognize text, particularly handwritten text,      
as accurately as Photomath. Furthermore,     
Eyequation is currently limited to arithmetic      
expressions involving integers 0-9 and the      

following characters: “+-()/x”. We plan to address       
these issues in our future work. 
 

II. IMPLEMENTATION 
The application’s pipeline can be broken up       

into six segments: keypoint detection, equation      
bounding, thresholding, character recognition,    
evaluation, and display.  
 

 
Figure 1: Pipeline Diagram 

 

 



A. Keypoint Detection 
The first step of the application is to find         

text in the image. We assume that the user has          
taken an image of dark text on a primarily light          
background, which may contain shadows. We      
first convert the image to grayscale and detect        
maximally stable extremal regions (MSER).     
MSER detection searches for regions of an       
image that remain relatively stable across      
many different thresholds. In other words, it       
finds regions that are darker than a certain        
value. As that value is increased, those regions        
will grow. Regions that do not grow while the         
value is significantly increased are those with       
much darker (or lighter) values than the region        
around them. MSERs are useful features for       
text detection because of the strong contrast       
between text and background and because of       
text’s connectedness . For this stage, we use       1

the implementation of MSER keypoint     
detection available in the OpenCV Android      2

library. 
In our future work, we plan to remove        

noise and shadow before applying MSER. This       
would reduce the number of spurious      
keypoints found by MSER, resulting in better       
bounding boxes around equations in the next       
step of the pipeline.  
 
B. Equation Bounding 

We use the keypoints detected by MSER       
to find image contours using OpenCV’s      
implementation of Suzuki’s Border Following     

1 ​Chen, Huizhong, et al. “Robust Text Detection in 
Natural Images with Edge-Enhanced Maximally Stable 
Extremal Regions.” ​Image Processing (ICIP), 18th 
IEEE International Conference​ , 2011 
2 http://opencv.org 

Algorithm , and we construct bounding boxes      3

around them. This provides us with a rectangle        
around the text. Depending on the scale of the         
image, each rectangle might bound an entire       
expression or, in the case of large font with         
large gaps in between, it might bound each        
character by itself. To deal with the latter case,         
we merge rectangles that are close together or        
overlapping. In particular, we merge a pair of        
rectangles if they are within a fixed vertical        
and horizontal offset (which we determined      
through trial-and-error experimentation) of    
each other. Note that we assume that each        
expression is written on a single line. 
 
C. Thresholding 

Though the equations have been isolated      
into bounding boxes, the boxes may contain       
shadows, noise, and other artifacts that could       
interfere with character recognition. To     
mitigate these artifacts, we perform locally      
adaptive thresholding over the entire image      
(see Figure 2 for an example). Locally adaptive        
thresholding is particularly useful for this      
application, because parts of the captured      
image are often under different amounts of       
shadow (for example, when the phone casts a        
shadow over part of the image). For this stage,         
we use OpenCV’s implementation of locally      
adaptive thresholding. Alternatively, one may     
choose to apply thresholding to the interior of        
each bounding box individually. However, one      
still may need to apply locally adaptive       
thresholding to each bounding box, as some       
boxes may have non-uniform illumination. We      
chose our approach instead because it is       

3 ​Suzuki, S. and Abe, K., “Topological Structural 
Analysis of Digitized Binary Images by Border 
Following.” ​CVGIP 30 1​ , 1985 

 



simpler and it generates satisfactory binarized      
images of each expression in practice. 

 

 
Figure 2a: Final Result under Shadow 

 
Figure 2b: Thresholded Image Generated 

from Image with Shadows 
 
D. Character Recognition 

The contents of each bounding box are       
then sent to the OCR engine. We use the         
Tesseract OCR engine, which is an open       4

source project currently supported by Google.      
The Tesseract classifier can be run in 2        
different modes: (1) an “adaptive classifier”      
mode which manually generates a feature      
representation of the image to classify      
characters and (2) a convolutional neural      
network algorithm referred to as Cube. The       
neural network mode is slightly more accurate,       

4 https://github.com/tesseract-ocr/tesseract/ 

but it runs more slowly. We determined that        5

the first mode provides satisfactory accuracy      
(as long as the input image has been processed         
as discussed previously). Furthermore, lower     
computational complexity is a high priority for       
mobile applications. To increase accuracy, we      
set Tesseract to match the text only to the         
symbols of interest, i.e. 0-9 and “+-()/x”. We        
also set Tesseract to search only for single        
lines of text, which reduces its runtime.  
 
E. Evaluation 

The OCR engine then sends the      
mathematical expression to be evaluated. For      
simplicity, we do not support algebra, calculus,       
etc. For this stage, we use the lightweight        
Javaluator library. First, we preprocess the      6

text recognized by Tesseract (e.g. we convert       
artifacts like “--” to “-”). Javaluator then parses        
the string and, if it finds that the string is a           
valid mathematical expression, calculates the     
result. 
 
F. Display 

After obtaining the result of the      
expression, we overlay the result on the mobile        
device’s screen next to the corresponding      
equation. Note that we display the captured       
image on the device throughout steps A-E as        
well. Moreover, we color-code the bounding      
boxes to indicate progress. When bounding      
boxes are found, we display yellow rectangles       
around them, as shown in Figure 3 below. As         
the contents of each bounding box is parsed        
and evaluated, we change the border color to        
green (if the evaluation is successful) or red (if         

5 ​Smith, Ray. ​An overview of the Tesseract OCR 
engine​ , 2007 
6 http://javaluator.sourceforge.net 

 



the evaluation fails due to an OCR or        
mathematical syntax error). Note that we      
display the result in a sensible location based        
on the location of the bounding box itself. If         
the bounding box is at the very top of the          
screen and doesn’t take up the entire screen,        
then we display the solved equation at the        
bottom of the box. However, if the bounding        
box takes up the entire screen, then we display         
the solved equation inside the bounding box.       
Displaying the full expression, along with the       
result, allows the user to be confident that the         
correct expression was indeed recognized. 

 

 
Figure 3: Yellow display shows that evaluation 

is still in progress 
 

III. RESULTS 
The application successfully reads, parses,     

and evaluates mathematical expressions    
accurately and rapidly. It succeeds at assessing       
multiple equations simultaneously, even when     
they are at different scales, as shown in Figure 4          
below. However, the application does fail      
occasionally at several points along the pipeline. 

 

 
Figure 4: Successful result on multiple 

equations with different font size 
 

At the beginning of the pipeline, the       
application may incorrectly label keypoints or,      
more commonly, may incorrectly group keypoints      
into bounding boxes. Often this is caused by poor         
scaling; when the text in the image takes up the          
entire field of view, the spaces between characters        
are so large that they are treated separately. The         
merging discussed above may not resolve this       
issue if the individual bounding boxes differ       
greatly along the vertical axis, which is       
interpreted as being on different lines of text.        
Other times, the opposite issue occurs and       
multiple equations are grouped together into a       
single bounding box. Again, this is affected by        
the scale of the text and of the image overall.          
Another error that can result in bounding box        
confusion is the detection of non-text keypoints.       
For example, if there is a line or border nearby,          
this may be grouped together with some text and         
corrupt the character recognition. 

In all of the above cases, however, the error         
can be easily noticed and rectified by the user.         
For example, if a bounding box contains non-text        
or multiple lines of text that should be separate         
equations, this will cause the evaluator to fail and         
a red rectangle will display. It will be clear from          
the location and contents of the rectangle what        
has gone wrong and the user can then re-take the          

 



image slightly closer or farther away or shifted in         
order to correct the issue. 

Another of the occasional sources of error is        
blur, which can be caused by unsteady hands        
when the image is taken. This causes the        
character recognition engine to misread the text,       
as shown in Figure 5 below. However, this error         
is also noticeable and fixable by the user. Either         
the evaluator will fail, causing the rectangle to        
turn red, or the evaluator will “succeed” but        
display an incorrect equation. Both cases are       
shown in Figure 5. 

 

 
Figure 5: Errors due to blur 

 
A minor and rare issue arises when results        

overlap when they are displayed. If an equation is         
at the top of the image, its result is displayed on           
the bottom of its bounding box. If another        
equation is below it, it is possible that the result          
displayed for that equation will overlap the       
display of the first. More generally, rectangles       
and result displays can collide, causing legibility       
difficulties. 

Further, the application assumes that the      
image satisfies certain conditions; it is inaccurate       
when the image is heavily skewed, when the text         
is handwritten, or when the equation involves       
characters outside of the assumed alphabet. The       
heavy skew causes the characters of the equation        
to be bounded individually, as shown in Figure 6         

below. We chose not to correct for skew since         
this would slow down the application and the user         
can easily rotate the device to avoid significant        
skewing.  

Note that a real user will always introduce        
some amount of skew. For moderate amounts of        
skewing, the bounding box detection still      
succeeds. Furthermore, we found that in practice,       
Tesseract’s internal de-skewing algorithm already     
corrects for a few degrees of skew. Therefore, the         
app can tolerate the moderate amounts of skew it         
is likely to encounter.  

The app can successfully bound handwritten      
equations, but the OCR engine was not trained on         
handwriting--it was only trained on a set of        
approximately 8 “typical” typed fonts. 

 

 
Figure 6: Error due to skew 

  
When the image is reasonably steady,      

well-scaled, correctly oriented, and contains only      
typed arithmetic, however, the application works      
very well. It is quick, accurate, and robust against         
shadows and other noise. 
 

IV. FUTURE WORK 
There are several ways that we could expand        

upon this project: 
We could experiment with different     

approaches to bounding equations with     

 



rectangles. For example, we could compare the       
performance of different keypoint detectors.  

We could also design an evaluator to solve        
more complex equations, such as those found in        
algebra and calculus, and to train the character        
recognition engine to recognize advanced     
mathematical symbols. We could even connect      
the application with the Wolfram Alpha API ,       7

which would enable the user to get a result for          
even the most complex expressions. 

Another possible improvement is to display      
not only the equation and results, but also        
intermediate steps in the solution. For example,       
explicitly showing carrying and borrowing in      
addition and subtraction. This would be a       
particularly helpful feature for educational uses. 

We could also improve the character      
recognition by using an engine trained on       
handwriting, implementing many possible    
methods, such as those introduced by Zhang, et        
al.,  or by Ali, et al.   8 9
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