
Plane Extraction on Surfaces

Connie Wu
Stanford University

wuconnie@stanford.edu

Abstract

In this paper we were able to achieve tracking of a
plane section on any well-textured surface. Our approach
achieves stability in tracking and we have optimized the al-
gorithm’s speed enough so that we could run it on an An-
droid device. After tracking a planar section, we were able
to place 3D objects on the planar selection. This is demon-
strated with a cube projection. By calibrating the camera,
we are able to determine the scale of the plane so that we
can properly scale the 3D object projections.

1. Introduction

Augmented reality is where a 3D object is overlayed in
a captured scene. Oftentimes this is most easily achieved
by placing the object on a surface. The most challenging
aspect of any augmented reality application is accurate and
robust dynamic image registration. Dynamic registration is
the accurate alignment of virtual and real images that mini-
mizes jitter and lag [1]. Furthermore, we must also consider
the challenge of making the algorithms computationally ef-
ficient enough so that they can run on smart phones or other
mobile embedded devices.

There are many approaches to this problem both marker-
based and marker-less. There are direct methods, which use
photometric error to track features as well as indirect meth-
ods, which usually comprise of feature detection specifi-
cally corners. Furthermore, depending on the number of
cameras there are also stereo-based methods that provide
more information for model mapping as well as depth in-
formation.

For our paper, we wanted to focus on a monocular indi-
rect marker-less tracking system.

2. Related Work

Here we will discuss prior work in marker-less tracking,
which is a relatively new and still developing field. One
of the first real-time marker-less method was RAPiD (Real-
time Attitude and Position Determination) created by Harris

[4]. In RAPiD the model must be known ahead of time
and the 6-DOF pose is estimated relative to this model by
estimating distance from model edges between frames. It
requires very little computation because it only tracks 20-
30 edge points per frame.This however does not work well
with new scenes.

Marchand et al used a 2D affine motion model to esti-
mate motion of the sequences [5]. They optimized the pose
by minimizing the new frame’s gradient intensities over the
model edges. It performs better than RAPid but is computa-
tionally expensive and would not work on a mobile device.

Then in the work of Vachetti [6] and Rosten & Drum-
mond [7] they showed that in contrast to edges, points tend
to be more accurate because they contain more information
and can have descriptors associated with them. This pro-
vides the motivation for our method development.

3. Methods
To approach this problem, we tried three different initial

approaches

3.1. Overview

3.1.1 ORB Feature Extraction/Descriptor Matching

Initially, we wanted to use Oriented FAST and Rotated
BRIEF (ORB) features because they detect corners and
also provide a good way to do feature matching via the
descriptors[2]. First we computed the keypoints and then
matched them using RANSAC.

3.1.2 Optical Flow with Shi-Tomasi Corner Detection

We then wanted to try a method that would allow for
tracking stability frame-to-frame and decide to use Lucas-
Kanade optical flow in combination with Shi-Tomasi cor-
ners, which are an optimized version of Harris Corners as
described in their paper[8]. For every five frames we would
detect the corners in the image and use optical flow to find
the trajectory of those points. This proved to be more stable
than the method above because optical flow was less likely
to match points incorrectly and as a result allowed for more
stability in the homography calculation.

1



Figure 1: Method Pipeline

Figure 2: Corner Detection with Shi-Tomasi

3.1.3 Optical Flow with FAST

This method is similar to the one above, but instead of Shi-
Tomasi corners, we used FAST corner detection. This was
done because FAST gave a slight speed improvement which
was crucial in the Android implementation.

Because of experiments we chose the latter two methods
which have a similar pipeline represented in Figure 1. The
details of which are summarized below:

3.2. Plane Tracking

1. Rectangular Selection: The user selects a rectangular
region on top of a surface. From this selection we save
the four points that form the corners of the shape and
keep track of those corners to reconstruction the quan-
drangular shape in subsequent frames.

2. Extract Features: We extract the corner features us-
ing either FAST or the Shi-Tomasi corner detection in
Figure 5. There was the option to only track features
inside the quandrangular region, but we found that for
scenes with few features in the region it was better to
track the surrounding features as well, provided that
the majority of the features are in the same plane for
the reason described in step 4. This step is performed
every 5 frames to allow for additional new features to
be added during a recording sequence.

3. Optical Flow: In order to reduce computation, we used
the Lucas-Kanade optical flow algorithm to determine
the corner point locations between frames. This algo-
rithm estimates the velocity vector of the given points.

Figure 3: Optical Flow Trajectory

Figure 4: Plane Projection

We used a 15× 15 patch which 2 pyramid levels. This
means that for motions greater outside the patch, opti-
cal flow will fail to find the corresponding point. This
will be evident during the mobile implementation.

4. Compute Homography: A homography is computed
between each frame to compute the pixel locations of
the quandrangle coordinates in the new image so that
we can draw the plane.

3.3. 3D Cube Projection

1. Camera Calibration: Using the checkerboard cam-
era calibration method we were able to calculate the
camera matrix for 320 × 240 and 1920 × 1080 res-
olution [3]. At the resolution of 320x240 there was
a focal length of 334.72 with a camera center at
(169.32,136.29) with RMS error of 1.54px. . For a res-
olution of 1920 × 1080 the focal length was 1338.88
and the camera center was (717.292,584.38) with RMS
error of 0.74px.

2. Solve Perspective-n-Point: Using the coordinates of
the first rectangular region selection, we can compute
the rotational and translation vectors of the perspective
transformation using PnP to get the 2D projection of
3D points. Then given an input of the unit 3D corners
of the cubic object, we can use these vectors to com-

2



Figure 5: Cube Projection

pute the 2D perspective location of the cube corners
above the bottom face.

3. Project Cube Corners: We then projected the cube ver-
tices onto the RGB images to yield the projection of
the 3D cube.

3.4. Mobile Implementation

On Android we had to take a different approach regard-
ing the parameters of the method. We had to bound the
number of features of the Shi-Tomasi corner detector to
50 features. We also had to decrease the resolution of the
frames down to 320x240 at 30 FPS. We found that by doing
this accuracy is mostly retained, but there is loss of good
corners. Also since the frame rate is lower, optical flow
does not perform as well as on PC, and we saw an increase
in pixel error.

4. Results
To properly assess the success of the tracking we wanted

to quantitatively judge the tracking accuracy. This was de-
termined by a combination of translational pixel error and
the retention rate of features from frame-to-frame.

4.1. Evaluation

To calculate the translational pixel error, this will vary
depending on the method chosen. In the first method with
ORB features and ORB descriptors we are using RANSAC
to do the feature matching. From RANSAC we can get the
p2 norm of the matched pixels. This will be our pixel error.

For the optical flow methods, we can compute pixel er-
ror from the error output of the OpenCV function calcOpti-
calFlowLK.

To calculate the retention rate, the following formula was
used:

Num features matched with less than 1px error
num features in previous frame

Figure 6: Tracked Tile in the 100th Frame Example (Opt-
Flow with Shi-Tomasi)

We evaluated the performance of these methods on a
simple checkerboard recording which should have rela-
tively easy tracking. From this experiments we yielded the
follow results:

Because of the results in Table 1, it was clear that we
should be using the Optical Flow methods over the ORB.
There retention rate of approx. 99% is much higher than
that of ORB at approx. 27%.

4.2. Tracking Error Validation

Given that the basic sequence has a checkerboard in it,
we were able to manually create a ground truth measure-
ment of the coordinates of the center tile of the 6th row of
the checkerboard. We measured the actual corners of this
tile for the 50th, 100th, 150th, and 200th frames. Then we
calculated the RMS p2 distance error of the tracker’s coor-
dinates from the ground truth and yielded the following.

This experiment verifies that using optical flow with ei-
ther FAST or Shi-Tomasi has negligible difference between
the two as can be seen in Table 2. However, we can see that
ORB loses tracking very quickly and has very large pixel
error. In fact on the 200th frame ORB cannot compute a

Metrics

Metrics ORB OF S-T OF FAST

Pixel Error 27.679 0.071 0.548
Retention Rate 0.275 0.995 0.991
Num Features 40 1462 205

Table 1: Optical Flow Methods Seem Better at Tracking

3



quandrangle because so many features have been dropped.

5. Conclusion

In well-textured areas, we were able to achieve stable
tracking of a plane and as a result we were also able to
place 3D object on top of the plane region. Running on PC
allowed for optical flow to perform very well in estimating
feature locations so there was very little jitter and feature
dropping. This was due to a higher frame rate of 90FPS. On
Android, however, sometimes frames(as high as 30 frames)
would get dropped and as a result there was more pixel error
in the feature matching because of higher perceived motion.

For future work, we can possibly overcome this problem
by using the on-board GPU to speed up computation. An-
other way to increase speed is to use direct methods, which
look at pixel intensities instead of indirect methods (SIFT,
ORB, etc.), which result in faster computation of features.
Similarly, since we are using a mobile device we can also
utilize the IMU on board to estimate the camera’s transla-
tion and rotation using the accelerometer and gyroscope, re-
spectively.

With respect to improving pose estimation, adding loop
closure allows the algorithm to identify when a familiar im-
age is seen and re-calibrate the camera’s pose, reducing drift
error over time [9]. In general SLAM algorithms will yield
more accurate results because they construct either a dense
or sparse model of the environment. Because our approach
is frame-to-frame, any error in the sequence will propagate
to subsequent frames, which is not desirable. But in SLAM
algorithms they will compare keypoints to the model and
reconstruct pose based on that information.

Overall, with the computation constraints on Android
CPU, this paper’s method does well for plane tracking in
textured scenes.

References

[1] Klein, Georg. Visual tracking for augmented reality.
Diss. University of Cambridge, 2006.

Tracking Error

Frame Index ORB OF S-T OF FAST

50 46.8402 5 5
100 487.4002 4 4.1231
150 209.7284 3.4641 3.4641
200 n/a 5.8310 5.5678

Total 743.9688 18.2951 18.2951

Table 2: RMS Error in Pixels

[2] Rublee, Ethan, et al. ”ORB: An efficient alternative to
SIFT or SURF.” 2011 International conference on com-
puter vision. IEEE, 2011.

[3] Harris, Chris, and Carl Stennett. ”RAPID-a video rate
object tracker.” BMVC. 1990. APA

[4] Ren, Shaoqing, et al. ”Faster R-CNN: Towards real-
time object detection with region proposal networks.”
Advances in Neural Information Processing Systems.
2015.

[5] Marchand, Eric, et al. ”Robust real-time visual tracking
using a 2D-3D model-based approach.” IEEE Int. Conf.
on Computer Vision, ICCV’99. Vol. 1. 1999. APA

[6] Vacchetti, Luca, Vincent Lepetit, and Pascal Fua.
”Combining edge and texture information for real-time
accurate 3d camera tracking.” Mixed and Augmented
Reality, 2004. ISMAR 2004. Third IEEE and ACM In-
ternational Symposium on. IEEE, 2004. APA

[7] Rosten, Edward, and Tom Drummond. ”Fusing points
and lines for high performance tracking.” Tenth
IEEE International Conference on Computer Vision
(ICCV’05) Volume 1. Vol. 2. IEEE, 2005. APA

[8] Shi, Jianbo, and Carlo Tomasi. ”Good features to
track.” Computer Vision and Pattern Recognition, 1994.
Proceedings CVPR’94., 1994 IEEE Computer Society
Conference on. IEEE, 1994. APA

[9] Ho, Kin Leong, and Paul Newman. ”Detecting loop
closure with scene sequences.” International Journal of
Computer Vision 74.3 (2007): 261-286. APA

4


