Book Cover Recognition

Linfeng Yang(linfeng @stanford.edu)
Xinyu Shen(xinyus@stanford.edu)

Abstract—Here we developed a MATLAB based
Graphical User Interface for people to check the
information of desired books in real-time. The GUI
allows user to take photos of the book cover. Then it
will automatically detect features of the input image
based on MSER algorithm, then it will filter out non-text
features based on morphological difference between
text and non-text regions. In order to further improve
the detection result, we implemented a text character
alignment algorithm which significantly improves the
accuracy of the original text detection. We also compared
the built in MATLAB OCR recognition algorithm and
a commonly used open source OCR. To perform better
detection results,we implemented post detection algorithm
and natural language processing to perform false detection
inhibition and word correction. Finally, we linked the
detection result to internet to perform online matching.
With some tolerance, more than 86% accuracy can be
achieved by our algorithm.

keywords-Text Recognition, MSER Feature Extraction,
Text Box Alignment, Automatic Word Correction.

I. INTRODUCTION

With the development of online shopping, more and
more people prefer to shop online for their favourite
books. However sometimes we still want to visit the
real store to get more details about the books. When
visiting bookstores, people always want to find more
details about the book they are interested. Generally, we
want to know more comments on that book, we may
also want to compare the prices for the same book from
different stores. In this way, we aimed at developing a
GUI that can take the advantages of both online shopping
and real store shopping. Therefore, the goal of our
project is to provide readers with more book information
(comments,prices). In this way, people can make better
decisions on taking books in the bookstore. In the future,
this project may be implemented on mobile device and
better help readers.

II. RELATED WORK

During the last few decades, there are a lot of research
and development related to this topic. Smith, R. help us

reviewed the development of Tesseract OCR engine[1],
their inspiring work lead us to think about using OCR
combined with necessary pre-processing steps. Patel.C
also lead us to a case study using OCR in the detec-
tion of natural texts[2]. In their work, they compared
the Tesseract OCR with Transym, and concluded that
Tesseract OCR is more stable when analyzing large
image database, and they analyzed the advantages of
Tesseract OCR. Their work inspired us to develop more
techniques to increase the accuracy of Tesseract OCR.
There are several ways to extract features from images
for text recognition, WT Ho et. al used SIFT Algorithm
to extract important features from license plate for text
recognitions[3], whereas Chen H et.al firstly introduced
the idea of using Maximally Stable Extremal Region
(MSER)[4]. Using mobile document database their ex-
perimental results demonstrate the excellent performance
of the proposed method. After some online research, we
also found MATLAB R2016b documentation provided
us a detailed example on extracting texts from natural
images. Based on all the literature research, we decided
to use MSER combined with geometric and stroke width
filtering to design our algorithm.

III. METHODOLOGIES AND ALGORITHMS

The following processing pipeline (Fig.1) shows how
we extract the book information from the book cover and
get related price information from the Internet. First,we
capture the image from the webcam as the input. Next,
some preprocessing methods are conducted in order to
make the book cover horizontally. Then, with MSER
method help finding the bounding box, we can extract
text information such as book title, author name in the
book cover by OCR method. Finally, the prices of the
book will be showed by searching the Internet using
the information we obtained as keywords. Later we will
discuss each part in detail in the following sections.

A. Image Preprocessing

1) Image Capture: Considering the sources of the
images in our daily lives, we implement two image
capture ways. These are loading an image in your

Overview of Algorithms

Step 1: Image Preprocessing

Input image

AMERICAN
CULTURE WARRIORS
IN AERICA

de-skew
detect regions

bounding box

merge

Tesseract
OCR

Step 3: Typo Correction
Step 4: Online Price Search

1

! Use text

: information
1 as keywords
1

= amazoncom

Fig. 1: Algorithm Pipeline

database or taking a real time image by webcam. We
use MATLAB GUI to automatically preview and take
snapshot of book cover images in natural environment
as input. After the input, we let user to select parameters
to perform better detection result (the default parameters
can already provide decent detection results).

2) Skew Correction: Some limitations of the captured
images will influence the performances of character
recognition, such as the geometrical distortions caused
by the digital camera or the rotations when people took
the photo. Thus we need to correct the rotations problem.
Since we can use the edge detection algorithms like
sobel edge detection to find the book cover’s edges, and
edges always appear as direct lines, then we use Hough
transform to do skew correction. In order to avoid false
correction resulted from skews lines that appear in the
book cover, we only take top 3 hough peaks.

3) MSER: Before we extract text information from
the book cover, we need to recognize which parts of
the book contain text. MSER is a method that shows
how we detect useful regions in an image that contains
text. Basically, MSER will extract the regions where we
observed large image gradient.

4) Morphological filtering: After the extraction of
MSER, the next step is to filter out non-text regions

based on the geometric difference between text charac-
ters and non-text regions. The properties weve chosen
are: Aspect ratio, Eccentricity, Euler number. Extent and
Solidity. Another common parameter used to discrimi-
nate between text and non-text region is stroke width.
Stroke width is a measure of the width of the curves
and lines that make up a character. Text regions tend
to have little stroke width variation, whereas non-text
regions tend to have larger variations. We use standard
deviation to represent the level of stroke width variations.

5) Positional filtering: Generally, the characters are

therefore the bounding boxes should be well aligned
if they are real character boxes. We used histogram to
group aligned bounding boxes based on their vertical
position. Because the non-text bounding boxes will have
more random vertical positions, they tend to be low
peaks or individual values on the histogram, therefore
we can set up group threshold to further filter out non-
text features.

6) Bounding Boxes Merging: After the detection of
individual character bounding boxes, we need to merge
individual characters into words to perform better Optical
Character Recognition. Matlab has already implemented
an algorithm for merging bounding boxes. However,
the algorithm does not consider the individual text
lines inside the merging boxes, and it will decrease
the total recognition accuracy. We developed a new
merging method which considers the single lines inside
merged bounding boxes, which significantly improves
the recognition accuracy.

B. Optical Character Recognition(OCR)

In order to get better optical character recognition
result, we used two different OCR functions. The first
one is the built in OCR function in MATLAB, and the
second one is an open source OCR from Google[5].
Both of them are generated from tesseract engine but
their performances are not identical across different book
covers. We will have a detailed comparison between
these OCR functions in the next chapter.

C. False detection inhibition and words auto correction

Because the diversity of font sizes and styles, both
OCR functions we implemented will have false detec-
tions. After the OCR, we first filtered out false detections
by setting a word confidence cutoff, then we implement
automatic word(typo) correction by downloading the
English word database and compare the words detected
with the words in the dictionary.

(b)

(d)

DR. KAPYA KAOMA

()

Fig. 2: Results for preprocess

(a): input image (b) de-skewed image (c) detect regions
with MSER (d): find bounding box (e): remove non-
aligned bounding box (f): merge bounding box

IV. RESULTS ANALYSIS
A. Matlab OCR vs Tesseract OCR

Tesseract is an optical character recognition engine
and it is considered as one of the most accurate open
source OCR engines. Here, I made comparisons of these
two methods. We downloaded 100 test images from
google. In order to test the robustness of the system, the
front book covers should be of different design styles.

TABLE I: Accuracy comparison

Accuracy text accuracy | online searching matching
Matlab OCR 57.3% 78%
Tesseract OCR 78.2% 86%

Overall, we can see from the tables (TABLE 1 and
Fig.3)that Matlab OCR lacks of the accuracy compared

TIME CONSUMPTION

[

Matlab OCR Tesseract OCR

= second

Fig. 3: time cost on MacBook Pro (Retina, 13-inch, Late
2012)

with Tesseract OCR, it saves some time during the
processing by the way. And the time cost stands for
all the processing procedure after we load an image.
Besides, even if we cannot extract exactly the same
book name, we can still find the book information online
by other information provided and robustness of online
searching. Thus, if the user cares more about the time
consumption, Matlab OCR would be a good choice.

B. Robustness to rotation

In order to test two OCR algorithms robustness against
rotation, we generate a dataset consists of 10 book
cover images with different rotation angles (from -30
to +30).Since we want to know more about the rotation
effects rather than the OCR detection effects,the dataset
we chose has good OCR detecting qualities. We calcu-
lated the accuracy by counting the correct characters that
are recognized by both algorithms divided by the total
number of all characters on the book cover, and the result
is shown below. It is suggested from the figure above that
both MATLAB built-in OCR and Tesseract OCR perform
relatively robust against rotation. It is also shown that the
accuracy of open source Tesseract OCR is more corre-
lated with the rotation angle, but the MATLAB built-in
OCR is more rotation-invariant. Although as shown in
the previous session that the accuracy of Tesseract OCR
is slightly better, MATLAB OCR is more robust against
rotation. Therefore it is worth putting future effort into
integrate the de-skew algorithm in MATLAB OCR and
text recognition algorithm in Tesseract OCR to improve
the accuracy of OCR algorithm.

y

Accurac!
e

0 | | I I I |

Rotation angle

Fig. 4: The comparison of performance against rotation
angle for MATLAB OCR(blue line) and Open Source
Tesseract OCR(red line)

C. Online price searching

In our project, we just linked to the amazon online
website to search for the book price, this can go further
by linking to different online stores and find reasonable
price by price sorting. The two examples in Figure
and Figure show that if we could extract correct book
information, we can get the online searching results
successfully.(Fig.5 and Fig.6)

o
maoncore AVERCAN CULTURE WARRORS WAFRCA . | %
«IC LM

amazon

8080 |

s 2

AMERICAN CULTURE WARRIORS INAFRICA -~

DAYS or DEALS

e
AMERICAN =
IN AERICA

DecionResst

AVERCAN CULTURE WARRIORS AFRICA B S
1 IGUTE TO THE EIPOTESOHOPHOBI IS
AKROUA

Fig. 5: successful online search examples-1

D. some unsuccessful test cases analysis

This example (Fig.7) shows an input image that our
system cannot detect the text information and thus can

Anszscon Aok Gomande BETE | % 8080
CLPEY Y

amazon

Depariments
Your search "Alul Gawande BETTE" 6d not match any products.
D you mean: ‘atul gawande betier
AT
— CARANDE

better

Priex Supstot

Tegorkrane 003

vk
Valegh 2
et o4

et 0GR

‘See more resulsfor "atu gawands beter”in Al Departments

Sponsored Links (4 [Tessect 0GR

Detcion ek
SeliseN T

i sefbac]

= B =

Busness Bool e

Fig. 6: successful online search examples-2

“A charming debut . .. You'll lssgh, you'll ory, you's feal new
sympathy for the cumudgeons in your i
—PEOPLE

A MAN

Fig. 7: image cannot be recognized

not find it online. Even if it is obvious to recognize the
book name, it is hard for the OCR system to separate
out the book information. The main reason may be
although the book cover has good visual quality, after
preprocessing, the image will have poor contrast because
of the man’s back picture in the background. OCR
has difficulty differentiating documents that have both
images and text. Besides, owing to the separate regions
of the characters, OCR will detect some single character
instead of the words.

The second unsuccessful test case (Fig.8) shows in
natural environment, we can see in the Figure that the
some of detected bounding boxes outreach the edge
of the book cover. Since OCR process text informa-
tion in the bounding box, the false bounding box will
significantly affect the detecting results. This kind of

Expanded Bounding Boxes Text

Fig. 8: image cannot be recognized

problem occurs when we use Matlab 2014b. It is because
we cannot use graph function in 2014b.The goal of
using graph function is merging all the overlapping
bounding box and the bounding boxes which are located
outside the book edge can be removed by non-aligned
bounding box removal. For 2014b, we took another idea.
The idea is counting bounding box’s size according to
their vertical positions and remove them if the vertical
bounding box’s size is less than the defined threshold.

V. DISCUSSION AND FUTURE WORK

In this project, we have successfully developed a
MATLAB GUI with automatic book cover detection
and recognition to help people take the advantages of
both online shopping and real book store shopping, with
emphasis on adding pre-process and post-process steps to
improve the performance of OCR functions, and finally
increase the rate of correct recognition. The GUI we
developed is platform-invariant, robust, fast and accurate
in providing good user interaction experience. Although
the initial motivation for this project is to provide better
experience for readers, but this system can also be used
to detect other text based items such as CD covers and
newspapers. With good flexibility, the system can be
further extended to be functional for multiple languages
and implemented on mobile devices. Although our text
detection system can have a reasonably good accuracy,
there are still a lot of ways to further improve this plat-
form. The first version of the software is not functional
on MATLAB versions earlier than 2016A, because there
are several built-in functions that are not implemented in
former MATLAB versions. In order to make the GUI text

detector more robust on different MATLAB platforms,
we developed our own MSER detection and bounding
boxes merging algorithms. However, the new algorithm
we developed is not as robust as the newest MATLAB
built-in functions. Some future effort is to tune the
algorithm so that the text detector is more user friendly
across all MATLAB versions. Our presented approach
brought up a number of novel ideas, including using
hough rotation, positional bounding boxes filtering and
auto word correction. We also compared the accuracy of
matlab OCR function and open source OCR function,
as shown previously, their performances are different
across different datasets. Therefore another future angle
is to carefully investigate the implementation of the two
methods and try to take the advantages of all them. Also
as shown above, the text detector will also misrecognize
some non-text features as text, and it cannot be filtered
by all methods discussed. Hence another possible option
is to implement Machine Learning and Deep Learning
to better characterize text region compared with non-text
feature.

VI. ACKNOWLEDGMENT

We would like to thank Professor Gordon Wetzstein
for teaching this great class and offering the opportunity
of working on a project as a team. We also want to
thank our tutor Jayant Thatte and all the TAs, who have
always been helpful in both the project and homeworks.
Last but not least, we thank all our classmates who we
have sought help from.

REFERENCES

[1] Smith, R. (2007). An overview of the Tesseract OCR engine.

[2] Patel, C., Patel, A., & Patel, D. (2012). Optical character
recognition by open source OCR tool tesseract: A case study.
International Journal of Computer Applications, 55(10).

[3] Ho, W. T, Lim, H. W., & Tay, Y. H. (2009, April). Two-stage
license plate detection using gentle Adaboost and SIFT-SVM.
In Intelligent Information and Database Systems, 2009. ACIIDS
2009. First Asian Conference on (pp. 109-114). IEEE.

[4] Chen, H., Tsai, S. S., Schroth, G., Chen, D. M., Grzeszczuk, R.,
& Girod, B. (2011, September). Robust text detection in natural
images with edge-enhanced maximally stable extremal regions.
In 2011 18th IEEE International Conference on Image Processing
(pp- 2609-2612). IEEE.

[5] Google open source Tesseract OCR
https://code.google.com/archive/p/matlab-tesseract-
ocr/downloads

