
Video Processing on Vehicle Front-View Camera
EE368: Digital Image Processing Final Project

Yaqi Zhang
Department of Electrical Engineering

Stanford University
Stanford, California 94305
Email: yaqiz@stanford.edu

Abstract—In this project, image processing techniques are used
to develop basic understanding on video recording taken by
vehicle’s front-view camera. By post processing on the video
recording, the computer is able to extract road sign and traffic
light information, and make prediction on how fast the vehicle is
moving and steering. The road sign recognition is able to identify
most of the signs in the video, and traffic light detection achieves
decent accuracy on three videos from KITTI benchmark [1].
Forward and steering angular velocity have mean squared error
around 0.94 m/s and 0.31 deg/s.

I. INTRODUCTION

With increasing technology to improve driving security,
surrounding camera is increasingly popular among recent
models of family using vehicles. With abundant information
collected by these cameras, there are few existing practices
that automatically analyze and understand the content of the
recording. By extracting information from the video, computer
can better understand the driving condition and surrounding
environment. The most common application is in the field of
self-driving, where vehicle needs be able to detect objects and
ground lane, and understanding traffic light as well as signs,
to make decision about its direction and speed. For vehicle
that are not self-driving but equipped with front-view cameras,
it is still valuable to post process and analyze the recording
by making inference on drivers decision based on detected
object and other information learned from the recording, and
potentially provide appropriate advice on drivers behavior.

This project focuses on three aspects of driving information:
• Detecting road signs
• Recognizing traffic light (exist or not and color)
• Predicting driving speed and steering speed, and making

prediction on state of the vehicle (e.g. Forward, Still, Turn
Left)

The major challenge for object detection is that front-view
cameras usually do not have very high resolution. Additionally,
due to distance to the detection target, the target usually
occupies only a small region in each frame and contain
limited number of pixels. This imposing challenge on making
detection based on geometry and pattern of the target, as
an edge no longer appears to be a line or a circle after
discretizing into a few pixels. This project addresses the issue
by blurring the comparison template and uses a bounding
box to threshold thethe geometry of the shape. For speed
prediction, the challenge comes from the fact that source of the

video is a moving vehicle, which has non-zero vertical velocity
and rotation along the forward axis. Moreover, moving objects
such as pedestrian and other vehicles introduce additional
interference on prediction of the speed of vehicle relative to
ground. To overcome the issue, averaged flow inside a small
window rather than original flow of each pixel is used in the
learning model.

The dataset used in this project are three raw videos from the
KITTI benchmark suite [1]. The labels on forward velocity and
angular velocity along upward axis are used for training and
testing purpose. The original dataset shoot in China mentioned
in proposal was not used because the video does not contain
velocity label.

II. IMAGE PROCESSING PIPELINE

A. Roadsign Detection

Fig. 1. Roadsign Detection Flow

Basic image processing flow for road sign detection is
shown in Fig. 1. For the interest of this project, only 16 signs
listed in Fig. 2 are used in template database. In order to
detect signs, all sign templates are matched individually to
each frame. Due to the shooting distance from the vehicle to
road signs, the appeared signs have very low resolution in the
original recording. This problem is illustrated in in Fig. 3,
where each individual sign is only a few pixels wide and
details inside the signs are very blurry. Additionally, the local
illumination condition is affected by the direction the sign

children_crossing give_way keep_right no_entry

no_parking_endno_parking_start no_stopping
no_stopping_end

no_stopping_start
parking

parking_end parking_start

pedestrian_left pedestrian_right speed_limit_30 stop_sign

Fig. 2. Road Sign Templete

is facing toward and whether it is shadowed by surrounding
objects. To overcome the issue, each sign template is blurred
by a 5x5 Gaussian filter before matching. Next, SIFT Keypoint
descriptor is used for identify keypoints in both templates and
frames. Then Hamming distances of the matched descriptors
are sorted and the matches with lowest distance are selected.
K Nearest Neighbor (KNN) matching with k = 2 is used in
order to perform ratio test [2], with the assumption that best
matching has much closer Hamming distance than the second
best.

Dist(BestMatch) < 0.7×Dist(SecondBestMatch)

In order to speed up the matching process, Fast Library for
Approximate Nearest Neighbors (FLANN) [3] is used to find
the closest matching. As shown in Figure 4, the approximated
matching almost produces identical result compared to the
exact match in OpenCV implementation.

In early attempt of the project, Hough circle transform
was considered to identify round signs, which assists feature
matching by localizing the signs in the image. However,
Hough transform is subject to false positive when detecting
really small circles. In Fig. 5 (a), although the round sign is
correctly picked out by Hough transform, many false positive
circles are introduced (the thresholds were adjusted to just
allow the correct sign to be identified and minimize falsely
identified circles). When applying the same set of threshold
parameters to a second frame, Hough transform fails to pick
out the red “no entry” sign, which is very small and blurry.
Overall, it is really hard to find a set of thresholds that
performs consistently well for all frames with a large variation
in round sign radius. Therefore, direct matching between sign

templates and the frames is used, which later we can see that
global matching can cause inaccuracy under certain scenarios.

Fig. 3. Low Resolution Road Sign

Fig. 4. Nearest Neighbor Matching Comparison

B. Traffic Light Recognition

The original idea of recognizing traffic light is also using
Hough circle transform to identify three circles that are
roughly of the same radius, and whose centers are roughly
aligned, which can be detected using Hough line transform
over centers of all detected circles. This approach facing
the same challenge that low resolution traffic light does not
appears to be a circle, and three lights does not light up at the
same time. The alternative approach is to use color to localize
the potential candidates of traffic light and using additional
conditions to filter out false positives. The assumption is
that since traffic lights are color sources, the RGB value of
the lights themselves are relevantly invariant across different
scenes and illumination condition. To identify the color, four
color masks for red, yellow, green (actually sky blue for
green light in Germany), and black are created using following
equations [4]. Colors that do not belong to any of these masks
will be set to white. To reduce noise, image is blurred before
thresholding. An example of a purified scene is shown in
Fig. 6 (The color in the image is for visualization purpose

Fig. 5. Detecting round sign with Hough Circle Transform

Fig. 6. Purified scene after color thresholding

only. The actual masks are 5 separated binary images). Using
red light as an example, contour of each connected component
in red mask is computed. Then convex hull is calculated
for each contour boundary. If the difference between the
maximum diameter (Dmax) and minimum diameter (Dmin) is
within a threshold, the contour is considered as a ”circle”. For
actual implementation, the process was simplified by fitting
a minimum area rectangle (MAR) to the contour, and check
whether width (W) and height (H) of the rectangle is within
a threshold.

|Dmax[hull[contour]]−Dmin[hull[contour]]| < threshold

|W [MAR[contour]]−H[MAR[contour]]| < threshold

Any contours that roughly fits in a square would pass the
checking criteria above. Therefore, additional checking on
surrounding colors of the contour is conducted. Specifically
for red light, area below the red region with rough the same
width and twice the hight as the qualified red region should be
in black for a vertical traffic light (Fig. 7). If let the red region
to be at coordinate (0,0), the surrounding color is collected
by masking the red region over (logical and with) all color

Fig. 7. Red Light Detection

masks at (0,-1), (0, -2) (Resulting color should be one of the
5 masks). The region over these coordinates are considered to
be a specific color if the corresponding area contain more than
a threshold % non-zero pixel in corresponding color masks,
to take into account the fact that the vertical axis of the traffic
light can be tilted due to movement of the vehicle. Similar
approach can be performed to check a horizontal traffic light
using neighbor coordinate at (+1, 0), (+2, 0) instead (though
do not seem to exist in KITTI benchmark from Germany).
Siimilar approach is used to check color at (0, +1) and (0, -1)
for yellow light and (0, +1) and (0, +2) for green light. The
corner case where red light and yellow light can light up at
the same time can be easily handled by checking if the color
at (0, -1) for red mask is either yellow or black and (0,+1) for
yellow mask is red or black.

C. Speed Prediction

Fig. 8. Dense Optical Flow and Averaged Flow

In order to make prediction on how fast the vehicle is
moving and steering, a simple linear regression model is
trained to make prediction based on optical flow of the video.
Optical flow assume matching pixels in consecutive frames
have relationship

I(x, y, t) = I(x+ dx, y + dy, t+ dt)

where dx and dy are small changes in space and dy is small
change in time. The equation can be simplified to optical
equation [5]:

df

dx
u+

df

dy
v +

df

dt
= 0

where df
dxu, and df

dy are gradient of the image along space
and df

dt is the gradient along time. In this project, dense
optical flow based on Gunner Farneback’s algorithm [6] is
used. To compute dense optical flow, gray scale images of two
consecutive frames are input to the algorithm, which outputs
a flow matrix with a flow vector for each individual pixel. The
dense optical flow is very noisy because the vehicle has non-
zero vertical and left-right velocity and rotation. Additionally,
there are other moving objects in the scene such as pedestrian
and other vehicles. To reduce the effect of relevant moving
object in prediction of vehicle’s absolute speed. Each frame
is segmented into n x m grid windows, where flow vectors
inside each window is averaged by taking average of u and
v components for all (u, v) in that window. Fig. 8 shows
dense flow vectors (shown in green) and averaged flow vectors
(shown in red) with 3x4 grids for moving and still scenes.
As shown in the moving scene, flow vector close to the gray
vehicle on the right has large magnitudes and angles along
body of the vehicle due to its vicinity to the camera. In the
still scene, there are non-zero vectors around the black car
moving from right to left. Averaged flow, on the other side,
is much less prone to noise introduced by local movement or
inaccuracy in flow computation (mostly around region with
similar colors such as ground or trees). There are two linear
regression models that both take in magnitudes and angles
of all averaged flow vectors as input (concatenated as an
array) and are trained to produce forward velocity and angular
velocity along upward axis separately. To make an inference
on state of the vehicle (Still, Forward, Turning Left, or Turinig
Right) the model simply thresholding on the predicted velocity
and angular velocity.

III. EXPERIMENT SETUP

This project uses three videos from the raw dataset in the
KITTI benchmark suite [1]. In order to figure out the optimal
segmentation size for the linear model used in speed prediction
described in section II-C, a space exploration experiment was
conducted by sweeping the horizontal and vertical segmenta-
tions for velocity and angular velocity. Error of the model is
measured by mean squared error of the prediction (Percentage
error is not a valid metric here because a very small speed
would naturally correspond to a very large percentage error
and speed at zero corresponds to error of infinity).

MSE = mean
(
(v̂ − v)2

)
Among the three videos, 80% of the frames are randomly
sampled for training and remaining 20% are used for testing.
Road sign matching and speed sweeping experiments are
really time consuming because feature matching and optical
flow require significant computation. These two experiments
are pre-computed on a server machine with 1 TB of RAM and
140 processors, and results are loaded from files when running
the demos. Road sign matching was parallelized with over 600
threads for about half an hour and sweeping experiments was
parallelized around 250 threads runing for 1 hour and 20 min.

TABLE I
ROAD SIGN DETECTION ACCURACY

signs Identified Misidentified

children crossing True True

give way False False

keep right True False

no entry False True

no parking end True False

no parking start True False

no stopping True True

no stopping end True False

no stopping start True False

parking False True

parking area end True False

parking area start True False

pedestrian crossing left True True

pedestrian crossing right True False

speed limit 30 True False

stop sign True True

Traffic light detection is very simple operation performed on
binary masks and hence is computed on the fly.

IV. EXPERIMENTAL RESULT

Due to time limit and missing road sign labels for the
data, there is not quantitative evaluation on precision of the
detection other than speed prediction. For road sign detection
and traffic light recognition, a rough statistics of correctly and
incorrectly recognitions are provided. A few scenarios under
which recognition failed are also analyzed.

A. Roadsign Detection

Fig. 9. Correct Sign Detection

Fig. 9 shows a set of scenes where road signs are correctly
identified while Fig. 10 shows a set of scenes where road signs

Fig. 10. Incorrect Detection or Unrecognized Signs

Fig. 11. Feature matching affected by illumination condition

are either unrecognized or misidentified (incomprehensive).
Most misclassification are due to the fact that original sign
templates do not have a lot of keypoints, and hence is really
easy to falsely matched to random keypoints in the scene.
The major cause of unrecognized sign are usually the low
resolution of the signs in the scenes.

Apart from resolution, Fig. 11 shows a situation where
illumination affects the quality of the feature matching. Al-
though, in theory SIFT descriptors should be invariant to
lightening condition of the picture, we can see that there are
less keypoints identified from the sign in video in Fig. 11 (a)
than Fig. 11 (b), where Fig. 11 (b) is obtained by performing
histogram equalization on a small window of the frame. One
hypothesis about this outcome is that histogram equalization
changes the gradient of the edges around the keypoint, which
allows them to standout when picking the top most keypoints
in SIFT descriptor. As a result, the sign is matched after appro-
priate illumination adjustment and localization. One approach
to identify this sign is to perform a sliding window on the
frame, where each window is first histogram equalized and
then matched to the template. However, sliding window is not
used in the entire video processing, as it significantly slow
down the matching process and only works for a few occasions
after tuning, and also introduces false positive recognition.

The other challenge comes with road sign detection is that
some signs are really simple in its pattern and geometry, such
that there are really few keypoints associated with the sign
template itself. An example of such road sign is the “no entry”
sign shown in Fig. 12. The sign only has a few keypoints
around two ends of the weight bar, which corresponds to a
1 pixel wide horizontal bar in the video frame. The other
hypothesis is that for the symmetric signs, there are actually

Fig. 12. Road sign with very simple pattern

Fig. 13. Identical signs after rotation

two almost equally good matching by rotating the signs 180
degree since the matching is rotation invariant. This will
unfortunately fails the ratio test, as the test assumes the best
matching is significantly better than the second best. The other
interesting signs are “keep right”, “keep left”, and “ahead
only”, which are identical after rotation. (Fig. 13). As a result,
rotation angle in homography has to be used to identified
the which is the actual matched sign (not a problem in this
dataset). The need of localization is also reflected when a sign
or similar signs appear multiple times in a scene, which will
result in more than one good matching in global matching.

B. Traffic Light Recognition

Fig. 14. Color masks of traffic light

Although the set of hand crafted rules developed for traffic
light detection is very specific to traffic light’s layout and the
color threshold might be sensitive to different regions and
countries, it is able to identify traffic light that are only 2-
3 pixel wide in the video when they are quite far away. The
color threshold is also relevantly stable for the set of video
tested. Fig. 14 shows a list of detected traffic lights and their
color masks. Fig 15 shows set of scenes where traffic light are
correctly identified. For the video tested, there is no traffic light
undetected or mis-colored. However, there is false positive
where back light of the black vehicle is identified as red light,
purely because the hand crafted rules fail under such occasion
Fig. 16.

Fig. 15. Correct Traffic Light Recognition

Fig. 16. Incorrect Traffic Light Recognition

C. Speed Prediction

In order to find the optimal segmentation size, we can
explore the space by sweeping the number of horizontal and
vertical slices in segmentation that minimizes the minimum
squared error. One extreme of the segmentation is to directly
use the dense flow matrix as inputs (with 1 pixel wide and
height window size), while the other extreme is treating the
entire frame as one window (with original image’s width and
height as window size). Intuitively, both extrema will not
perform well because the first extreme suffers from noise
in fine-grain flow matrix while the other is too coarse-grain
to capture any variation in different scenarios. The result
of the space exploration is shown in Fig. 17. As expected,
the minimum MSE occurs at middle of the parabola with
11x12 number of windows at 0.9416 m/s and 13x12 at 0.3089
deg/s for velocity and angular velocity. One interesting result
shown in Fig. 18 is that when using all frames rather than
80% and 20% for both training and testing, the training error
have a completely different surfaces that favors maximum
segmentation. This is because of overfitted model that although
gives minimum error at maximum segmentation, too much
details caused by the noise are captured by the model. As a
result, its output is very sensitive to variation in the input,
and will perform poorly on any unseen data. A more rigorous
testing error can be calculated with k-fold cross-validation.
However, due to the amount of computation time it requires,
it is not explored in this project.

V. LIMITATION AND FUTURE WORK

The apparent drawback in approach for road sign detection
in this project is the matching speed, which make it impossible
to perform real time recognition. The thresholding for traffic

Fig. 17. Space Exploration on Degree of Segmentation on Testing Error

Fig. 18. Space Exploration on Degree of Segmentation on Training Error

light is also sensitive to color in different country and can
not be generalized to a large variation of different lights. For
speed recognition, one potential improvement is instead of
using dense optical flow, Lucas-Kanade’s optical flow [7] can
be used to only keep track of flow of major keypoints, which
might improve accuracy due to noise reduction. Furthermore,
a better learning model other than linear regression with more
training inputs can also improves accuracy and generalization
to different videos.

VI. DEMONSTRATION

Three videos from KITTI dataset with labeled detected
signs and traffic lights, and predicted speeds are available
as demos. The project is on github repository: https://github.
com/blackwings-01/DrivingPerception.git. Due to size of the
repository (containing data), cloning the repository can po-
tentially fail due to connection timeout. So please down-
load the zip file instead at https://github.com/blackwings-01/
DrivingPerception/archive/master.zip. More information about
how to setup and run the demos are available in README.md.

VII. CONCLUSION

This project uses image processing techniques to develop a
basic “video interpreter” of vehicle’s front-view camera, which
allows computer to understand some important information
about the driving by “watching” what driver can see. In reality,
there are much more advanced techniques that can perform
the same tasks with much better accuracy. However, the road
sign detection in this project is able to achieve an moderate
accuracy. Comparably, traffic light detection is more robust,
and velocity predictions are able to achieve a reasonable
accuracy.

REFERENCES

[1] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The
kitti dataset,” International Journal of Robotics Research (IJRR), 2013.

[2] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[3] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with auto-
matic algorithm configuration,” in International Conference on Computer
Vision Theory and Application VISSAPP’09), pp. 331–340, INSTICC
Press, 2009.

[4] C. Yu and Y. Bai, “A traffic light detection method,” in Advanced
Technology in Teaching, pp. 745–751, Springer, 2012.

[5] S. S. Beauchemin and J. L. Barron, “The computation of optical flow,”
ACM computing surveys (CSUR), vol. 27, no. 3, pp. 433–466, 1995.

[6] G. Farnebäck, “Two-frame motion estimation based on polynomial ex-
pansion,” in Scandinavian conference on Image analysis, pp. 363–370,
Springer, 2003.

[7] B. D. Lucas, T. Kanade, et al., “An iterative image registration technique
with an application to stereo vision.,” in IJCAI, vol. 81, pp. 674–679,
1981.

APPENDIX

This project is related to a research project in computer
vision, in which the same dataset is used and tasks are
performed but detection and prediction are using convolutional
neural network. The result of this project will become a
baseline as a comparison to the research project. However, the
implementation of this project was performed independently.

