On-Road Vehicle and Lane Detection

Chi-Shuen Lee, Yu-Po Wong*, Xuerong Xiao
Department of Electrical Engineering, *Department of Applied Physics, Stanford University

Motivation
- Facilitate self-driving car

Objective
- Detect lanes/vehicles; estimate distance from monocular vision

Lane Detection
1. Edge Detection
2. Hough Transform
3. Vanishing Point Filter
4. Lane Detection

3D Ground Plane Reconstruction
0. Camera matrix known
1. Vanishing point \overline{d}_{3D}
2. Lane width = 3.6 m
3. Camera height = 1.6 m

Car Detection
- Positive training data
- Negative training data
- HOG model
- Extract HOG features
- Linear SVM
- Hard negative mining
- Evaluation
- Test model
- Test image

Results and Demo

Difficulty & Future Plans
- Curved lanes are not considered.
- Car detection precision/recall not good enough; bounding box not tight enough
 \rightarrow RBF Kernel SVM + Optimization
 \rightarrow Refine positive training data: tight bounding box
- Occlusion is not resolved
 \rightarrow object tracking
- Program is too slow
 \rightarrow reduce search

Reference
[3] Matlab Lane Departure Warning System