
Chess State Detection

Bhavani B S

Department of Electrical Engineering

Stanford University

Stanford, CA 94305

Email: bhavani@stanford.edu

Abstract—Chess detection algorithm is an implementation

capable of recognizing chess board, locate the squares and detect

chess pieces from an image. This algorithm will work for a couple

of viewing angles between 30 to 60 degrees. This is constructed

using image processing techniques. Firstly the chess board is

segmented from the input image, and then Hough’s transform is

used to detect crosses. Next, each square, with some vicinity

around it, is extracted, parsed and checked to see if it contains

chess piece. Then in each of the segments, pieces in the vicinity

margin are removed, leaving only the chess piece of the main

square. The test piece is oriented vertically and compared with

the pre-defined training set. The area score is later calculated by

taking difference of scaled training pieces and the test piece. The

one resulting in the lowest score is the best matching piece.

Keywords—chess detection; chess piece recognition

I. INTRODUCTION

Chess is one of the most intellectually challenging games.
People have been playing this since 6

th
 century. This makes

people smarter, build critical thinking and prediction skills.
However, it is also a complex game for the masses with
difficulty even in following the rules of the game. Thus, the
algorithm explained in the report is a technical solution for a
new person to not only get to know the basics of the game, but
also to predict the future moves for a given state of a chess
piece.

This algorithm can also be used in robots to play chess

[1].

Most of the existing chess playing robots are designed to play
for a given viewpoint. These robots can be made more robust
by making it work for different viewing angles, and with
further improvement, this algorithm can be made independent
of color of chess pieces. These robots can be even contested on
the basis of chess engine.

II. IMAGE PROCESSING

A. Detection of squares in the chess board

First, the chess board is extracted from the image. This
helps in detecting the grid of cross lines more accurately and
filter out the lines that don’t correspond to these cross lines.

To generate the mask to extract out the chess board, input
image is binarized using Otsu’s method, then detect edges
using Canny’s edge detection followed by Hough’s line
detector. Each line is then processed to obtain left, right, top
and bottom mask. Left mask is a binary image that has value

‘1’ for all positions that lie to the right (below) of every line
having positive slope. Likewise, right mask will have all ‘1s’ to
the positions lying to the left side (above) of all lines with
positive slope. Top mask will have all ‘1s’ below (left) the
lines having negative slope and bottom mask will have all ‘1s’
above (right) lines having negative slope. Performing AND
operation on these 4 masks will get the mask of the chess
board. Close filtering is performed to remove lines on the mask
which don’t correspond to the chess board edges. Using this
mask the chess board is extracted (Figure 1).

To the extracted chess board Otsu’s binarization, Canny’s
edge detection and Hough’s line detection is applied once
again. Now the noisy lines will not be detected (Figure 1).
Morphological operations like close filter are reused to extract
out the regions that correspond to 64 squares of the chess board
(Figure 1).

Fig. 1. Top row (left to right) input image; segmented chess board; second row
(left to right) Hough’s transform on the segmented board after applying Otsu’s
binarization and Canny’s edge detector; Labelled squares of the chess board;
Bottom row (left to right) squares showing detected pieces; Extracted pieces of
the input image by using a mask obtained by subtracting two color channels

B. Detection of pieces on the chess board

First, squares containing pieces need to be detected. The
input images used in this scenario have pieces with shades of
gray on a board with color and texture. A useful property of
gray image is that all the three color components have same
value. On subtracting two color channels, the result will have
value 0 at all locations where pieces are found and a non-zero
value to other [1]. By implementing binarization and inversion
we will get a mask which can be used to extract out the pieces

on the chess board (Figure 1). In case of images taken at
varying light conditions, MAP detector will be useful to extract
the pieces. For only gray images, line detection on small
segment on images can be done and remove the cross lines.
There after basic image processing techniques can be used to
refine the result.

To check if there is a piece in the region, area occupied by
the suspected piece in the region is noted. With sufficiently
good area detected, presence of piece can be concluded (Figure
1). Once the piece is present, the color of the piece is noted to
check if the piece is black or white.

Every square, containing a piece, is extracted along with
small vicinity around it. This segment can have neighboring
pieces, which needs to be eliminated. Distance transform can
be applied on this image [4], and then is eroded it to get small
regions at every piece. The region closest to the centroid of the
square is picked and dilated and used as mask to extract the
piece. Most of the images taken at any angle will have the
pieces looking almost straight with slight tilt. For erosion, a
rectangular structuring element whose height is bigger than
width can be used resulting in elimination of overlap on sides.
But the result should be further refined to perfectly extract out
the piece (Figure 2).

Fig. 2. Two sets of images showing extraction of piece (left to right) Test piece
pawn; test piece rook; (sub images 1 to 4) small segment of image taken from
the square which contained a piece; results of applying distance transform on
image 1; segmented image after removal of noisy piece; mask of piece; mask of
the piece after fixing the orientation

Fig. 3. Computation of area score of the test piece Rook on training piece; first

row (left to right) Training rook; training Queen; second row (left to right)

training pawn; training Knight; bottom row (left to right) training king;
training Bishop; sub images (1 to 3) scaled mask of training piece; test piece;

difference if training and test piece

The orientation of the extracted piece is fixed in a way so

that the comparison with training set will be easy. Major axis
that passes through the mask of the extracted piece is detected,
its orientation with respect to y-axis is calculated and this angle
is used to rotate the piece to make it straight. Transformation of

the piece on z-axis produced results very similar to scaling.
Hence for comparison, the mask training set is scaled to match
the test piece. For each training piece, the difference of the
scaled training mask and the test mask is calculated - the
number of ‘1’s is counted in the resulting image and this
corresponds to the area score for the given training image. The
training piece that corresponds to the lowest area score is the
matching piece. This process is repeated to all the pieces
present on the chess board to recognize the pieces (Figure 3).

III. EXPERIMENTAL RESULTS

Figure 4 summarizes results obtained for chess images
taken at different viewing angles. The results are pretty good
for angles round 45 to 60 degrees. On an average 70% to 80%
of pieces can be detected correctly. This algorithm fails to
detect pieces for top view and side view.

INPUT IMAGE AT

DIFFERENT VIEWING

ANGLES
RESULT

PERCENTAGE OF

CORRECTLY

DETECTED PIECES

R

K

P

P

P

P

B

P

N

B

Q

R

K

N

B

R

12/16 = 75%

R

P

N

K

R

Q

P

N

R
P

P

P

P
P

K

R

N

15/16 = 81%

R

B

N

P

K

B

R

P

R

P

P

P

N

P
P

K

R

17/17 = 100%

R

P

N

R

Q

R

K

K

K

K B

P

B

R

P

P

8/16 = 50%

N
P

K

P
P

N

P

R

N

P

P

R

P

P

B

P

K

N

N

15/19 = 79%

Fig. 4. Table showing results on images of chess piece taken at different

angles. (Notation K: King; Q:Queen; B:Bishop; N:Knight; R:Rook; P:Pawn)

IV. IMPROVEMENTS

There is no perfect algorithm. This algorithm too has a lot
of areas of improvement.

A. Shape matching

Experiments with couple of image matching techniques to

match the pieces are carried out. However, keypoint detectors

fail to match the pieces exactly because most of the pieces

have similar keypoints. Likewise if the moment on the edge of

the piece is computed, the resulting numbers are also similar.

The distance plots of the edge from the major axis too had

similar trend for a couple of orientations.

To have better results, a mechanism to compare shapes is

needed. One solution is to find the orientation of the chess

board in reference to a flat chess board. For this two images

are needed or the dimension of the flat chess board with

respect to the given viewpoint needs to be found. Using this,

matrix of the affine transform can be generated. Another

solution is to match shapes using shape context by which

similarity of shapes can be measured by solving corresponding

points between two shapes and then estimate an align

transform. The dissimilarity between the two shapes is

computed as a sum of matching errors between corresponding

points [5].

B. Overlap of pieces

The pieces need to be segmented out well when there is

overlap with the same colored piece [2] [3]. In case of

different colored pieces, it is easy to segment them out. Then,

these results also need to be refined. Another challenging task

is to properly detect and segment out pieces when the pieces

and chess squares are of similar color.

C. Add intelligence to the algorithm

The two kings are always present till the end of the chess

game. The king is generally the tallest among all pieces. Using

height measurements, it can be checked if the pieces were

correctly detected or not. The pieces can be categorized based

on heights and only those templates can be used that belong to

that category for detection. Perspective height of all present

pieces can be used by applying affine transform for a given

location.

Sometimes a given piece could be detected more than the

valid number of times. In such cases, analysis can be done on

the basis of the area score or height and recursively apply

shape matching algorithm to refine the results.

D. Different light conditions

Since virtual chess images were used for the experiment,

varying light conditions are not tested. As mentioned earlier it

is safer to use MAP detector to deal with variations in light

conditions.

E. Top and side viewing angle

This algorithm can produce good results for images taken

at angles around 30 to 60 degrees. Detection of chess piece

from top and side view could be improved.

F. Chess engine

Once the state of the chess board is known, a chess engine

can be implemented to predict the next best move.

ACKNOWLEDGMENT

Thanks to the teaching staff and mentors for all their
support in helping me decide and execute this project. Also
thank my manager and my organization who gave me an
opportunity to learn this amazing course.

REFERENCES

[1] Wang, V; Richard Green, “Chess move tracking using overhead RGB
webcam”, pp. 299-304, 27-29 Nov 2013

[2] Dhara, B.C.; Chanda, B., “A fast interactive image segmentation to
locate multiple similar colored objects”, Computer Vision, Pattern
Recognition, Image Processing and Graphics (NCVPRIPG), 2011 Third
National Conference, pp 25 – 28, 15-17 Dec. 2011

[3] Arteta, C. ; Lempitsky, V. ; Noble, J.A. ; Zisserman, A., “Learning to
Detect Partially Overlapping Instances”, Computer Vision and Pattern
Recognition (CVPR), 2013 IEEE Conference on, pp 3230 – 3237, 23-28
June 2013

[4] Hinterstoisser, S. ; Lepetit, V. ; Ilic, S. ; Fua, P., “Dominant orientation
templates for real-time detection of texture-less objects”, Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Conference, pp
2257 – 2264, 13-18 June 2010

[5] Serge, Belongie; Jitendra, Malik; Jan, Puzicha, “Shape Matching and
Object Recognition Using Shape Contexts”, IEEE Transaction on
Pattern Analysis and Machine Intelligence, Vol. 24, April 2002

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6132472
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6132472
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6132472
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6596161
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6596161

