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Abstract—In this paper, we correctly detect and identify a
chessboard and the configuration of its pieces through the appli-
cation of image processing. While more technically challenging,
the use of image processing to detect and identify a chessboard
and the configuration of its pieces avoids the need for a digital
chess set. Furthermore, image-based detection of chess pieces is
a vital step in building chess-playing robots.

I. INTRODUCTION

Over the years, the task of electronically tracking a game
of chess has been undertaken by many people. A digital chess
set can easily record a game automatically, but the specialized
chessboard and pieces can cost hundreds of dollars. While
more technically challenging, the use of image processing to
detect and identify a chessboard and the configuration of its
pieces avoids the need for a digital chess set. Furthermore,
image-based detection of chess pieces is a vital step in building
chess-playing robots, as the playing strategy of the robot
depends on its knowing the locations of its own chess pieces
and the pieces of its opponent. Such robots can be used for
fun and have been considered as an interactive toy that helps
in developing the learning abilities of children.

A review of existing work on visual recognition of a chess-
board and pieces provided more information on recognizing
the board rather than the pieces. In addition to chessboard
detection in the context of playing chess, there is work on using
chessboard patterns to perform automatic camera calibration
[1]. Chess-playing robots such as MarineBlue [2], Gambit [3],
and others [4],[5] classify pieces based on the initial positions
at the start of the game and track piece movements as the game
progresses. Additionally, most of the projects reviewed use a
direct overhead view of the board, with a few exceptions [3]
[6] [7].

A goal of this project is identification of both the board and
pieces using image processing. Therefore, a direct overhead
view was ruled out, as the different types of pieces are
nearly indistinguishable from this angle. The resources cited
earlier provide some applicable approaches to identifying the
chessboard but almost no information on approaching the piece
identification part of the problem.

A. Chessboard

Tam, Lay, and Levy’s paper on Automatic Grid Segmen-
tation of Populated Chessboard [6] categorizes methods for
detecting the grid into corner-based and line-based, opting to
use a line-based method. Tam et al. use edge detection and
the Hough transform to detect lines, followed by using the
geometry of a single square to extrapolate locations of points in
the local neighborhood. The algorithm described in this paper

is similar but uses a different method for inferring the geometry
of nearby squares.

The de la Escalera paper on camera calibration [1] uses
both corner detection and line detection in conjunction. Al-
though corner detection could potentially improve results, it
was not used in the final algorithm for this project because
initial testing showed a high proportion of corners detected
that were not relevant to the board. Also, chess pieces may
obscure a number of corners, further lowering the yield.

B. Chess pieces

Most of the current chess playing robots projects [4] and
[5] assume the initial positions of chess pieces to be entered
manually by the player at the begining of the game, and only
the piece movements on the board are tracked during the game.
Identifying chess pieces is a challenging task, as they don’t
have texture. Therefore, matching pieces through SIFT/SURF
descriptors doesn’t give good results. Figure 1 shows that few
inliers comes out of matching the profiles of two queen pieces
using the SIFT algorithm.

Pattern or shape recognition is more suitable for identifying
the pieces as it depends on their contour or silhouette shape. A
good survey on shape representation algorithms was conducted
in [8]. Shape representation can generally be divided into

1) Polygonal approximation.
2) Spatial interrelation feature.
3) 1-D shape signature.

As its name indicates, polygonal approximation simplifies
each shape to a polygon. This method captures the overall
shape of the object and ignores the fine details. Therefore, it
is expected to work well for objects with high geometrical
dissimilarities. Spatial interrelation features represent objects
by their geometrical features and the relations between points
on their contours. One of the well known spatial interrela-
tion feature representation techniques is shape context. Shape

Fig. 1. Inliers from sift matching.



context takes a reference point on the object contour and
makes it the center of a polar plane that is divided into
bins. The histogram of the contour points in each bin is the
shape representation of the object. The 1-D shape signature
represents the 2-D object with a 1-D function. Chess pieces
have a similar elongated shape, and the difference among
them is the fine variations in their boundaries. This makes
polygon approximation and the shape context not the best
shape representation method.

Fourier descriptors are one of the most famous and suc-
cessful descriptors in the field of pattern recognition. The
main idea is to represent the 2-D shape as a 1-D function
(shape signature) that depends mainly on the shape contour,
then get the Fourier coefficients of this signature. The Fourier
descriptors of a curve are translation, rotation, and scale
invariant. The most common shape signatures are the centroid
distance function and the cumulative angular function [9][10].
The centroid distance function determines a number of points
on the shape boundary and gets the distance between each
point and the shape centroid. This signature is translation
invariant. The cumulative angular signature simply calculates
the tangent angle at the boundary points as tangent angles track
variations in the object contour/pattern as shown in Figure 2.
The function φ(t)is modified as follows to be periodic with
period 2π.

φ(t) = φ

(
Lt

2π

)
+ t, t ∈ [0, 2π] (1)

The addition of t also makes φ8(t) of a circle equal zero,
which indicates that a circle is shapeless or a reference shape.

Fig. 2. Cumulative angular function [9].

II. ALGORITHMS

Initial work and testing was performed using a standard
chessboard and pieces. However, segmenting the images with
the default coloring was extremely challenging. To aid in
distinguishing a light piece from a light square and a dark
piece from a dark square, a board with red and green squares
was substituted.

III. CHESSBOARD RECOGNITION ALGORITHM

The objective with regard to processing the chessboard is to
find a mapping from the original image to an ideal chessboard.
Having this mapping simplifies analysis of the color of each
square and also associating a piece with the square that it
is occupying. At a high level, the approach consists of the
following steps: 1) detect edges, 2) use the Hough transform

to detect lines, 3) select two pairs of lines to locate a single
square, 4) extrapolate out to locate remaining squares, and 5)
apply a perspective transformation to the completed board.

The first step of the process is edge detection with the
goal of producing a suitable input for the Hough transform.
From the original image with red and green squares, binary
images for red and green channels are obtained by subtracting
the other color channels from the desired channel, applying a
median filter to reduce noise, and binarizing the result using
Otsu’s method. If the image does not contain other red and
green objects, the two binary images have a foreground of
only red (or green) squares (Figure 3). Edges are created using
morphological edge detection on the combined red and green
images, specifically, dilating the image and subtracting to get
the difference (Figure 5).

Fig. 3. Binarized image of red squares.

Fig. 4. Binarized red and green images combined (close-up).

Fig. 5. Edges of binarized board image (close-up).



The Hough transform is applied, and a limited number
of peaks (eighteen) are selected. The number of peaks was
chosen to allow identification of all lines on the chessboard
while minimizing extraneous lines. Although some extraneous
lines may be identified and true lines on the board missed,
a number of these errors can be handled with no negative
impact. The resulting lines are categorized into sets based
on the distribution of theta values. Two peaks in the theta
distribution are identified (Figure 6), and all lines near a peak
are selected for membership in that set (Figure 7).

Fig. 6. Distribution of theta values associated with lines.

Fig. 7. Lines separated into sets by orientation.

Locating the first square on the chessboard is a critical
step because the remaining squares rely on this initial square.
Within each set of lines, pairwise intersection points are
calculated. If many lines do not intersect, it is assumed that the
lines are close to parallel, and those with theta values equal
to the mode of the set are selected as the best candidates. If
the set is not approximately parallel, members that intersect at
points relatively far away from the other pairwise intersections
are discarded, based on the fact that the true lines should all
converge to a single point. Of the remaining candidate lines,
the largest consecutive subset is chosen, and from that subset,
the two central lines are determined to be the edges of the first
square. The corners of this square are found by calculating the

intersections of the final two pairs of lines.

Fig. 8. First square with selected lines in cyan and intersections in yellow.

The homography transformation matrix is estimated using
the four corners of the initial square and setting the last entry
of the matrix (h33) equal to 1 [11]. The ideal board corner x
and y coordinates and the image coordinates are used to solve
for the best estimate of values h11 through h32.

H =

[
h11 h12 h13
h21 h22 h23
h31 h32 1

]
The transformation is applied to predict the locations of the
two far corners of an adjacent square. Then, the set of lines
with the appropriate orientation is searched for a member that
approximately intersects both corners. If no line is found that
meets the criteria, the Hough transform is applied to a corridor
within the image where the line is expected to be, and the
resulting lines are checked. In this manner, adjacent squares
are located by searching to the right, left, up, and down from
the initial square, until either no further squares are found, or
the current row/column has eight squares. At each step, the
homography matrix is recalculated using all squares that have
been found so far. When a full row and column have been filled
in, all horizontal and vertical lines have been determined, so
the corners for the remaining squares are calculated by finding
the intersections.

Fig. 9. Process of locating corners of an adjacent square.

Finally, an inverse transformation is applied to the com-
pleted set of squares to reshape the board area into the
idealized form. The same method described above is used
with all 81 corners mapped to an ideal board with squares
100 pixels wide used as input to estimate the transformation
matrix. From the transformed red and green binary images,
it is easy to count the ratio of red/green pixels to total red



and green pixels in each square. Normalization is required
because the sum of the red and green pixels in a square may be
significantly less than 10,000 if a chess piece appears within
the boundaries. The inverse transformation is also used to
associate the detected chess pieces with the respective squares
that they are occupying. A point at the base of each connected
region is transformed into board coordinates, which indicates
which row and column the piece is in or if it is outside of the
playing area.

Fig. 10. Combined red and green squares after transformation.

IV. CHESS PIECE RECOGNITION ALGORITHM

As explained in I-B, chess pieces share much similarity
with each other, for example they all have same base shape.
This similarity makes choosing the centroid distance as a
shape signature not very accurate (especially if we are going
to normalize the distance to make it scale invariant). For
this reason, using the cumulative angular function as a shape
signature along with its Fourier descriptors is a better choice
for detecting chess pieces as they track the finest details
of the shape contour and thus track all possible variations
among pieces. The following subsections explain the steps of
identifying the chess pieces.

A. Constructing the database

The first thing to do is to capture reference images for
each chess piece from different view angles, and to get the
binary pattern (silhouette) of each piece. Some azimuthally
asymmetric pieces like the knight and the king need more
reference images than symmetric pieces like the pawn, rook,
queen, and bishop. Figures 11 and 12 show the reference
images for the queen and the king respectively. The number
of reference images for the bishop, king, knight, pawn, queen,
and rook are 30, 46, 49, 26, 31, and 20 images respectively.

The database has some deliberate redundancy to reduce
chances of piece misidentification. The optimum number of
images in database can be obtained by removing images
and comparing recognition rates after additions/removals. This
database was refined twice to remove ambiguous shapes.
For example, pawns were mistaken for rooks because of
the ambiguous rook in Figure 13. Therefore, removing this
misleading image from the rook database was important to
refine the database.

Fig. 11. Queen database.

Fig. 12. King database.

B. Identifying pieces

The Fourier descriptors were calculated for each reference
image by first getting the shape signature (cumulative angular
function) and then getting normalized Fourier coefficients. Test
images are matched to the nearest neighbor in the database in
the descriptors domain.

As explained before, getting a neat contour is a vital step
in piece identification. Since lighting conditions are not always
controllable, glare on pieces can make the contour appear
chopped or ragged. Three different methods are used to get
the contours of the pieces. The first one is segmentation using
unsupervised thresholding (Otsu segmentation), the second is
detecting the edges of pieces using the Canny edge detector,
and the third is detecting pieces by their colors.

Segmented pieces from each of the above three methods
are identified independently. Then, two selection methods are
used to determine a final recognition. Each connected region
from each image is matched to its corresponding connected
region in the two other images by comparing the centroid
locations of each connected region. Also, a base point for each
connected region is calculated to help identify the position of
the piece on the board. This base point is taken at the base
of the piece to make sure it lies in the correct square. (For
example, the top point of a king will not reflect its position
correctly.) The first selection method is a majority vote. For
example, if two methods agreed on the same class ”pawn”
of one piece, then this piece is finally determined to be from
class ”pawn”. The second selection method is the minimum
distance. According to this method each initial decision from
(segmentation, edge detection, and color detection) is reported
along with its error, then the final decision selects the initial
decision with minimum error.

Also, knowing how many pieces of each class are present
on the board can be used as side information to help improve



Fig. 13. Ambiguous rook.

decisions. If class ”king”, for example, has extra pieces and
class ”queen” or ”pawn” has missing pieces, the kings with
highest errors are reclassified and set to any of the other classes
from the three initial votes.

V. RESULTS

One challenge of our approach is finding a suitable camera
angle, which becomes a trade-off between 1) obtaining a more
distinctive shape profile for the pieces and 2) minimizing
occlusions and simplifying board geometry. For recognizing
the chessboard, an overhead angle is optimal because in the
ideal case, there is no perspective transformation, and the edges
of the board are not occluded by pieces (assuming pieces are
placed fully within their respective squares). For recognizing
the pieces, the shape profiles are most distinctive from a direct
side view but indistinguishable from an overhead view. In
addition, at lower angles, pieces may occlude each other to
a greater extent.

To assess this trade-off space, pictures of the chessboard
and pieces were taken using different camera angles, with
images including the board alone, the pieces alone, and the
chessboard populated with varying numbers of pieces. Four
categories were created for camera angles of approximately 20
degrees (angle 1), 30 degrees (angle 2), 45 degrees (angle 3),
and 60 degrees (angle 4). The following sections assess the the
algorithm to identify the board, the robustness of the Fourier
descriptor to recognize the pieces, and the full algorithm with
discussion of the challenges.

Overall, a viewing angle of approximately 45 degrees is
favorable for correct identification of both the board and the
pieces. As expected, the the steepest angle category is most
favorable for recognizing the board but less favorable for
recognizing pieces.

A. Chessboard

Images from each of the four angle categories were pro-
cessed to locate the corners of each square on the chessboard
and the results scored manually to determine the number of
errors. Within each angle category, images have varying board
orientations and varying numbers of pieces populating the
board. The total number of images tested in each category
are 33 (angle 1), 39 (angle 2), 57 (angle 3), and 40 (angle 4).
A success rate of 90 percent or better was achieved for the two
steepest angle categories, as shown in Figure 14. The second
lowest angle appears to be a breaking point, and the lowest
had a very poor recognition rate.

A selection of images with poor results in the first angle
category were analyzed to determine the failure mode, and the
most common issue was identification of the initial square.

Fig. 14. Chessboard success rates at different angles.

When orientations of the two sets of grid lines are not well-
separated, the two sets can be defined incorrectly, resulting in
a pair of lines that are not true lines on the board. Another
contributing factor is that the lines defined by the peaks of the
Hough transform included a greater number of erroneous lines
at the lower viewing angle.

Due to the limited scope of this project, it is assumed that
the scene containing the chessboard does not contain other red
and green objects. Although the algorithm was not designed
to handle extraneous red objects, a small number of images
were taken to test performance with red objects in the scene.
In three of three images, the board had multiple errors due to
interference with the other red objects.

B. Chess pieces

The piece detection algorithm was tested with 42 test
pieces (with neat contours) from three different views. The
algorithm is able to correctly detect all pieces of the for view
1 and view 2. However, it mistakes the rook, bishop, and
sometimes the king in view 3 as shown in Figure 15. It is worth
mentioning that the database doesn’t have enough images for
these three pieces in the top view, as they cause confusion
for the algorithm when testing pieces from views 1 or 2 with
ragged contours.

It is worth noting that these test pieces have an almost
perfect contour, so they do not show how robust the detection
algorithm is to variations and changes in the piece’s contour.

Fig. 15. Piece recognition rate



Fig. 16. Error in Fourier descriptors after rotation/scaling

Figure 16 shows a reference image for each piece and the
distance between the rescaled/rotated image and the original
image in the descriptor domain. As shown, all pieces (except
the king) have normalized error below 30 percent for 360
degree rotation with 45 degree steps. The king and rook images
have higher error for scaling. All pieces are identified correctly
over the whole scaling range [0.25-4] except for the king,
which was misidentified at scaling factors 0.25 and 4. All
pieces were identified correctly for all rotation angles, except
for the king, which was identified correctly only at the 135
degree angle. The most obvious reason for this unique behavior
of the king is the high discontinuity in its contour due to the
cross shape on its top.

To check the robustness of the algorithm to error in the
shape signature, a zero mean Gaussian noise is added to the
shape signature φ∗(t) of each piece and the recognition rate
versus the error variance is sketched in Figure 17. Also, a
zero mean Gaussian noise is added to the x and y positions of
the boundary points and the recognition rate for each piece is
sketched versus the variance in Figure 18.

C. Full algorithm (chessboard and pieces)

Figure 19 shows the recognition rate of pieces on the
chessboard for images taken from angles near 30, 45, and
60 degrees. The chessboard must necessarily be recognized
successfully in each image, since the full algorithm cannot run
to completion otherwise. A total of 36 pieces at each angle are
tested. The algorithms show a good overall performance with
recognition rate between 70-80 percent at 60 degrees view
angle, around 78-94 percent at angle 30 degrees and 82-100
percent at angle 45. It is worth mentioning that the lighting
conditions are not exact for all cases and the testing sample
is not very big, so more testing might be more informative.
Figures 20-24 show steps of piece identification.

VI. CHALLENGES AND POSSIBLE IMPROVEMENTS

Chess pieces and the original chessboard were the same
color, which made identifying the board and pieces a hard task,
therefore we used a printed board with two primary colors red-
green to be easily distinguished from the pieces.

Lighting conditions affect segmentation, therefore three
different methods were used to extract pieces contour, voting
and side information were used to improve decision if possible.

Pieces are usually well identified at low angles while the
board is well identified at high angles. Angle 45 degrees is a
good angle for detecting both the board and pieces.

Further improvements can be done to the project

1) Use images from different view angles to resolve
occlusions.

2) Use 3D object recognition and try other shape signa-
ture and compare their results with the currently used
cumulative angular function.

3) Use size variations between pieces (taking into ac-
count scaling from perspective transform) to help
identify pieces.
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Fig. 17. Recognition rate vs. variance of error in shape signature

Fig. 18. Recognition rate vs. variance of error in shape contour.

Fig. 19. Recognition rate for different viewing angles

Fig. 20. Chess board before and after setting red ang green squares to white

Fig. 21. Piece identification using segmentation.

Fig. 22. Piece identification using edge detection.

Fig. 23. Piece identification using color detection.

Fig. 24. Piece identification after voting.


