
Document Decomposition into Geometric and
Logical Layout

Vincent Deo
Stanford University
vdeo@stanford.edu

Terry Kong
Stanford University

tckong@stanford.edu

Maisy Wieman
Stanford University

mwieman@stanford.edus



Abstract

We present an Android application for scanning LaTeX documents to determine the
logical layout of the document. The algorithm first prepares the image for processing,
then determines where text and figures are within a document, and finally classifies
these various components of a document.



Chapter 1

Introduction

One popular method of producing aesthetically pleasing PDF documents including di-
verse contents is LaTeX. LaTeX is a low-level markup and programming language that
allows high flexibility for designing placement of text and figures, as well as overall
document structure. However, this precision is hard to reproduce; once a PDF docu-
ment is generated, there is no way in general to access the code used to generate the
document. In particular, it is very difficult to recreate the template used to design a doc-
ument. This project aims to analyze the layout of a PDF document in order to simplify
the generation of LaTeX templates.

Images are taken on an Android device and sent to a server to be processed1. Once
sent to the server, it is processed in a combination of Matlab and Java, and the final out-
put is saved on the server. The algorithm is comprised of 3 main steps: preprocessing,
detecting maximal white rectangles, and classifying components of the document.

Android
image capture Binarization Skew

Correction
Margin

Removal

Preprocess
Connected

Components

Maximal
White

Rectangles

Postprocess
White

Rectangles

Analyze
Horizontal
Projections

Global and
Local Feature
Comparison

1This is the typical pipeline for image processing tasks and is preferred in this project because of the
computationally intensive tasks.

1



Chapter 2

Preprocessing

Before analyzing the image, a reliable binarized representation of the image must be
found to allow for proper interpretation of various components of a document. To op-
timally apply further document analysis, the image must be vertically aligned without
a background. The image is captured with a mobile phone, and the document in the
picture may be rotated or have low contrast. This section discusses our method of
addressing these concerns in order to prepare the image for layout analysis.

2.1 Binarization
Lighting conditions may be uneven, so adaptive Otsu thresholding is used to binarize
segments of the image. Overlapping windows of a fixed size are applied to the image,
and for each window, the variance is compared to some threshold to determine whether
to apply the Otsu threshold. This threshold is partially determined by the mean and
variance of the entire image, since images that are taken with low lighting levels will
have lower means and variances. After computing for each window, any pixels that
have been evaluated as black more than twenty percent of the time are determined to
be black.

2.2 Skew Detection
Images taken at an angle must be rotated so that text lines are parallel to the image
edges. The Hough transform is used to determine the angle to which the image is ro-
tated. Rather than applying the Hough transform to the whole image (which will detect
lines that stretch diagonally across text, as well as dominant lines in the background),
we apply the Hough transform to smaller portions of the image. We determine which
regions are most likely to be text by evaluating the variance, and we take the Hough
transform of regions where the variance is high.

For each window, we find the histogram of angles, and sum the contributions. We
assume that the image will be rotated by an angle less than forty-five degrees. Because

2



(a) Detecting Hough Transform lines of
small portions of an image.

(b) Theta Values of Hough Peaks

of this, we can combine the contributions of perpendicular lines; a page with text go-
ing in one direction will often have lines perpendicular to the text, whether those lines
represent the edges of the paper or the edges of figures. When the input angle is con-
strained, we can interpret perpendicular lines as representing the same input angle. We
rotate the image by the angle that occurs most often in this new histogram of combined
perpendicular lines.

2.3 Background and Margin Removal
To remove the background, we find the edges of the document. If the background
is in contrast with the paper, binarization will detect high variance at the edges of
the document, and create dark edges around the document. We find these dark edges
by creating a histogram detailing the longest consecutive line of dark pixels for each
row and column, and find where the number consecutive dark pixels is greater than
average, which occurs at the longer stripes across the edges. Once we have determined
the boundaries of the paper, we must then remove the margin. We then apply a median
filter to denoise the image, and find the first and last rows and columns with black
pixels to remove the margin.

3



Chapter 3

Layout extraction by Maximal
White Rectangle analysis.

3.1 Approach and Purpose
The Maximal White Rectangles (MWR) approach for document layout analysis was
developed by Henri S. Baird in the 90s. With recent dramatic improvements in comput-
ing power, this technique formerly either very constrained or very slow is now achiev-
able for full scale 150 to 300 dpi binarized documents.

The idea of MWR analysis comes from a global-to-local, non-backtracking doc-
ument analysis approach matching the implicit approach of a human reader. Indeed,
the eye is first attracted to important white spacing from which we deduce the reading
order. e.g first the margins, then isolate the title, separate the columns of text, then
the paragraph boundaries, etc. Similarly, the MWR algorithm enumerates all the max-
imum (by inclusion order) empty rectangles, in a document image, and outputs them
sorted by an area-based metric.

From that point, we are to select a given percentile of the highest-scoring MWRs,
which reunion creates a template of empty zones in the original images (see figure
3.1). The remaining area uncovered by selected MWRs is separated in connected com-
ponents which are likely to correspond to logical blocks in the document, given that
they are surrounded by large empty areas but do not contains such large white areas.

The purpose of the MWR in this context is to use this overlay, to further on use the
relative positions of the blocks to determine their reading order and logical functions.

4



Figure 3.1: Left: a typical document. Right: Its generated overlay with MWR
enumeration. Rectangles going through figures are a preprocessing artifact

which is corrected further in the processing.

3.2 Algorithm
The algorithm used to enumerate all the maximum white rectangles in a binary im-
age is described in this section. It is a balanced-tree-based algorithm, which overall
complexity is O(n log(n)) where n is the number of maximum white rectangles, which
itself amounts to O(m2) in the worst case with m the number of black pixels.

3.2.1 Preprocessing
For runtime reduction, we use a connected-component reduction pre-processing. Each
black connected component is extracted from the original image, from which we ex-
tract a pixel-aligned rectangular frame surrounding it. Only two sides of this frame are
kept, the left and top ones.

This step reduces every connected component to a 1-pixel thin ‘Γ’-like shape,
which then can be downsampled with very little loss of information. The templates
of the connected components are stored for further overlaying after MWR enumera-
tion. With that preprocessing, we achieve a reduction of the number of black pixels to
process by typically 70-80% before downsampling, that amounts to a total reduction
of 85-95% after downsampling.

A typical 300 dpi letter format document (8.5 Mpx) contains about 1,000,000 black

5



Figure 3.2: State of running MWR enumeration. Solid red: column being pro-
cessed, Black crosses: black points/pixels. Black dotted: rectangle root of the
tree. Blue dotted: rectangles of depth 1 in the tree. Red dotted: leaves of the

tree, corresponding to rectangles going all the way to the left.

pixels in 10,000 connected components, which is reduced to a preprocessed image of
1 Mpx with 50,000 - 150,000 black pixels.

3.2.2 MWR Enumeration Core Algorithm
The algorithm sweeps across the document from left to right, processing all black pix-
els. The pending maximal white rectangles are kept in a balanced tree structure in
which every node represents a rectangle. Such a rectangle is represented by its upper,
lower and leftmost bound, until a black pixel interrupts the rectangle by imposing a
right bound.

The tree structure is naturally derived from a natural point of view of creating max-
imal white rectangles sweeping from left to right. ‘Thin’ white rectangles go from the
left margin to the current column in between the already found black pixels. Taller
rectangles start at the right of already processed black pixels. See figure 3.2.

The tree is kept balanced with the following invariants:

• The leaves of the tree from (left to right) form an uninterrupted partition of the
height of the image, all being rectangles starting at the left edge.

6



• The root is a rectangle covering the whole height of the paper, with its left edge
starting at the last (hence rightmost so far) processed black pixel

• For any node, the leaves of the subtree below span an exact partition of the height
span of the rectangle represented by this node.

• For any node, the left bound is larger than the left bound of all rectangles in the
subtree below.

For the processing step displayed on figure 3.2, the rectangle tree would be the follow-
ing, with the syntax ([top,bottom],left) for a running rectangle.

([0,3], 2.5)

/ \

([0,1.5], 1.5) ([1.5,3], 0.5)

/ \ / \

([0,0.5], 0) ([0.5,1.5],0) ([1.5,2.5],0) ([2.5,3],0)

The invariants described above are preserved by the following process for integrat-
ing a new black pixel:

• Find the lowest node being split if the vertical direction by this black point.
Discard all the nodes that are split as finished MWRs.

• Split the tree along the split node and its fathers (that are all split as well). A
rebalancing operation not described here ensures that the depth does not increase
dramatically during these operation.

• Merge the two trees generated by the previous step under a new root, a rectangle
starting a the current black pixel and spanning the whole height.

3.2.3 Implementation
It is to be noted that the algorithm described above processes ponctual black dots in a
continuous 2D space. Optimizations can be done when we know black dots are actu-
ally 1-px wide and necessarily lie on a grid. Otherwise, we just need to discard 1-unit
wide rectangles as being nonexistent (in between contiguous black pixels).

For performance, the algorithm was implemented in the Java language, achieving a
runtime of about 8 seconds for a typical document.

3.3 Post-processing
The process allows to successively discard maximal white rectangles in a binary layout.
This rectangles are immediately pushed in a priority queue which keeps them sorted
by a user-defined metric.
Empirically, the rectangles that best separate the logical block without going through

7



them are the large rectangles with a large aspect ratio, such as ones running between
columns or cutting in between two paragraphs, or between a figure and its caption. For
that purpose, the following classifying metric was empirically developed by Henri S.
Baird, and is the one we used in this project with encouraging results. The ceiling of
aspect ratio to 16 is somehow arbitrary but allows to avoid growing the score of -for
instance- very thin rectangles that run in between characters.

score = area× log(min(aspectratio,16))

Finally, a certain percentage has to be chosen to construct the image layout. In this
project, we have used between 1-5%, providing typical results as shown in figure 3.1 1.
Typically our preprocessed images contain about 15,000 MWR, and between 100-200
MWR is a good quantity to determine the block-by-block layout without separating
lines with smaller rectangles.

After this MWR layout processing, logical components are isolated and can be
analyzed either independently or together to determine their nature and logical connec-
tions, which is done in the following steps of the project.

1This was produced with 1% of all MWR.

8



Chapter 4

Classification

Once the maximal white rectangles have been calculated, a subset of the largest rect-
angles can be used as partial covers to segment content in the document. The union
of these partial covers creates a mask for the document where connected components
in the mask are blocks of content. It is crucial that the chosen subset of partial cov-
ers correctly separates different types of content; otherwise the classification will be
meaningless.

4.0.1 Assumptions
There are many types of document layouts that each have different conventions for
properties such as caption position or footer extent. This required us to limit the scope
of document layouts the algorithm may accept in order to guarantee reliable classifica-
tion. Academic papers and textbook pages tend to follow the conventions that we aim
to cover, but more generally, any document that follows these set of rules should be
correctly decomposed and classified:

• The document should be in Manhattan Layout, but in general, any one type of
content in the document must have a rectangle that circumscribes only that con-
tent and no other type of content.

• Text is horizontal.1

• Figures must have captions, and the captions must be proximal and appear below
the figure.

• Page Numbers must be centered at the bottom of the page.

The types of content that we aim to classify with this set of rules are text, figures,
captions, page numbers and miscellany objects, e.g., horizontal and vertical dividing
bars. First, a global-to-local classification is done to classify a block of content as text,
figure, or neither, and then local classification is done to classify types of text.

1Vertical Text would be recognized as a figure.

9



(a) Text Block
(b) Text Block: Horizontal Pro-

jection
(c) Text Block: Horizontal Au-

tocorrelation

Figure 4.1: Text Block Analysis: a) Text Block b) The horizontal projection
with its mean subtracted out of the text block in part a c) the autocorrelation of

the horizontal projection with the border effects removed

4.0.2 Global-to-Local Text Classification
Within global-to-local classification, there are two main types of content: ”large” con-
tent and ”small” content. The terms ”large” and ”small” are loosely used here because
they are qualifiers of both area and aspect ratio. More on this is discussed in subsequent
sections.

”Large” Content

Given that a block of content is ”large,” it is almost certain that this block is either text
or a figure. The approach of classifying this large block involves taking the horizontal
projection and analyzing it’s autocorrelation which is based off of [1]. The funda-
mental idea is that large blocks of text have multiple parallel lines of text which are
separated by line breaks. Once a horizontal projection is taken, it can be considered
as a quasiperiodic signal. If there is a strong fundamental frequency component in this
signal, which corresponds to the line break spacing, the block is considered text. The
blue line in the plot Figure 4.3b is an example of a horizontal projection of a block of
text.

While designing the classification step, it was observed that the horizontal projec-
tion near the top and bottom border of a text block negatively affected the classification
step; so in each projection, the ends are removed. The edge removed projection is the
red plot in Figure 4.3b. The details of this are not crucial so further explanation is not
needed.

Instead of analyzing the raw signal to determine it’s fundamental frequency, it is
easier to analyze the autocorrelation of the signal. This is because the autocorrelation
of a periodic signal is again periodic. Another reason the autocorrelation is preferred is
because the autocorrelation is essentially a summation of many random variables and
this essentially smoothes2 the data. Taking a Fourier Transform is the natural next step,
however in this project, the fundamental frequency was calculated in the primal domain

2By convolution.

10



(a) Figure Block
(b) Figure Block: Horizontal

Projection
(c) Figure Block: Horizontal

Autocorrelation

Figure 4.2: Figure Block Analysis: a) Figure Block b) The horizontal projection
with its mean subtracted out of the text block in part a c) the autocorrelation of

the horizontal projection with the border effects removed

(a) Text Block with Skew
(b) Text Block with Skew: Hor-

izontal Projection (c) Text Block with Skew: Hor-
izontal Autocorrelation

Figure 4.3: Text Block with Skew Analysis: a) Text Block with Skew b) The
horizontal projection with its mean subtracted out of the text block in part a c)
the autocorrelation of the horizontal projection with the border effects removed

by finding the mode distance between a subset of the most significant maxima, which
offered a more robust way of rejecting figure blocks. Figure 4.3c shows an example of
the autocorrelation of a horizontal projection with marks on the most significant peaks.

If the autocorrelation did not have enough significant maxima to establish a funda-
mental frequency/period, then the block was classified as a figure. As a comparison,
Figure 4.2 shows the autocorrelation of a figure’s horizontal projection with the most
significant peaks marked.

This use of the autocorrelation to classify large text blocks is robust against slight
variations in skew angle. This is because the horizontal projection is still quasiperiodic
because of the periodicity of the line breaks. This is shown in Figure 4.3.

”Small” Blocks

To classify smaller blocks, the approach involved categorizing each block by its area,
aspect ratio, and vertical projection to surmise the type. This idea isn’t completely new
and still appears in the literature [2] as a reasonable approach when the classification

11



problem has a narrow scope.
The rules that were implemented in this project were:

• If the height of the bounding box3 is shorter than some threshold it is not a figure.

• If a small block in area has a large aspect ratio it is either a line of text or a
horizontal divider depending on the variance of its vertical projection.

• If a block has small area and close to unity aspect ratio, it is either text, like a
page number, or part of a figure.

These rules are not meant to comply with every document layout; however, for the
document layouts of interest, these rules seemed to work well.

4.0.3 Local Classification
Once all of the blocks are classified as text, figure, or neither, we can double back and
further determine what kind of text blocks we have. This is important since our goal is
to classify document parts with fine granularity to make the layout classification task
easier. Another advantage to doubling back is that content such as figures that do not
have captions underneath them must have been incorrectly classified in the global-to-
local classification step. This improves the accuracy of classification.

The rules that were implemented in this project were:

• Captions must appear proximal and below a figure. There can only be one cap-
tion per figure.

• Page numbers are ”small” blocks of text that are centered with respect to the
entire page and must be below a certain point on a page. The fact that they are
”small” blocks prevents misclassification of a footer.

Footers were not classified since they are usually separated from text by a horizontal
line. If the skew of the binary document is incorrect, without OCR, this horizontal line
will not be distinguishable from text using only a horizontal or vertical projection.

3The convex hull of a connected component from the MWR mask

12



Chapter 5

Results

Since the image pipeline involves executing Matlab code, it was a logical choice to
run the image processing off the device. With the current implementation in Java and
Matlab running on a 2.3 GHz Intel Code i7, a typical picture of a document taken on
an 8MP camera takes approximately 25 seconds to process. The results of 73 pictures
of documents conforming to the IEEE conference format are compiled below in Figure
5.1. 1 The numbers on top of each bar are the number of documents, out of 73, that
contained that content type.

Figure 5.1: Tested Accuracy

1Paragraphs were considered as one block and if all lines of text within a paragraph were classified as
text, the paragraph was considered correctly classified.

13



Chapter 6

Conclusions

As the results suggest, text is the most correctly classified content block owing to the
fact that the priority of the classification step is determining whether or not a block
is text with the autocorrelation method. The bias in the design of the classification
algorithm led to the bias in the results. The classification could be made even more
robust if an OCR engine was used to confirm the character components in text blocks,
which suggests a route for future work.

Another observation was that the accuracy was heavily dependent on the skew es-
timation in the preprocessing step. While the classification step may still be correct if
a block is slightly skewed, the maximal white rectangle analysis may not return max-
imal rectangles that segment content properly. This is a huge contributor to the error
observed in Figure 5.1. One step to improve this would be to extend the allowable
transforms from affine to homography. This will allow for perspective corrections,
which were an issue in a few test cases.

Future work for this project includes developing a bottom up approach incorporat-
ing OCR to transcribe the text in each text block as well as produce the LATEXcode that
creates the layout of the document.

14



Bibliography

[1] Baird, H.S., ”Anatomy of a versatile page reader,” Proceedings of the IEEE, vol.80,
no.7, pp.1059,1065, Jul 1992

[2] Gupta, G.; Niranjan, S.; Shrivastava, A.; Sinha, R., ”Document Layout Analy-
sis and Classification and Its Application in OCR,” Enterprise Distributed Object
Computing Conference Workshops, 2006. EDOCW ’06. 10th IEEE International,
vol., no., pp.58,58, 16-20 Oct. 2006

[3] H. S. Baird, S. E. Jones, and S. J. Fortune, ?Image segmentation using shape-
directed covers,? in Proc. IAPR IOth Int. Conf: Pattern Recognition, Atlantic City,
NJ, June 17-21, 1990.

[4] Cattoni, R., Coianiz, T., Messelodi, S., Modena, C. M. (1998). Geometric layout
analysis techniques for document image understanding: a review. ITC-irst Techni-
cal Report, 9703(09).

[5] Nazemi, A., Murray, I., McMeekin, D. A. (2014). Practical segmentation methods
for logical and geometric layout analysis to improve scanned PDF accessibility
to Vision Impaired. International Journal of Signal Processing, Image Processing
and Pattern Recognition.

[6] B. Girod, ”Image Segmentation” [Lecture Notes]. April, 2014.

[7] B. Girod, ”Edge Detection” [Lecture Notes]. April, 2014.

[8] B. Girod, ”Morphological Image Processing” [Lecture Notes]. April, 2014.

15


