Digital communication system

Representation of the source signal by a stream of (binary) symbols

Adaptation to the properties of the transmission channel

We will be looking at this part

Shannon’s separation principle

Assume:
1. Point-to-point communication
2. Ergodic channel
3. Delay $\rightarrow \infty$

Adapt to source statistics (and distortion measure)

Adapt to channel statistics
How does compression work?

- Exploit redundancy.
 - Take advantage of patterns in the signal.
 - Describe frequently occurring events efficiently.
 - **Lossless coding:** completely reversible
- Introduce acceptable deviations.
 - Remove information that the humans cannot perceive.
 - Match the signal resolution (in space, time, amplitude) to the application
 - **Lossy coding:** irreversible distortion of the signal

Lossless compression in lossy compression systems

- Almost every lossy compression system contains a lossless compression system

We will discuss the basics of lossless compression first, then move on to lossy compression
Topics in lossless compression

- Binary decision trees and variable length coding
- Entropy and bit-rate
- Huffman codes
- Statistical dependencies in image signals
- Sources with memory
- Arithmetic coding
- Redundancy reduction by prediction

Example: 20 Questions

- Alice thinks of an outcome (from a finite set), but does not disclose his selection.
- Bob asks a series of yes-no questions to uniquely determine the outcome chosen. The goal of the game is to ask as few questions as possible on average.
- Our goal: Design the best strategy for Bob.
Example: 20 Questions (cont.)

- Observation: The collection of questions and answers yield a binary code for each outcome.

Which strategy (=code) is better?

Fixed length codes

- Average description length for \(K \) outcomes \(l_{av} = \log_2 K \)
- Optimum for equally likely outcomes
- Verify by modifying tree
Variable length codes

- If outcomes are NOT equally probable:
 - Use shorter descriptions for likely outcomes
 - Use longer descriptions for less likely outcomes

- Intuition:
 - Optimum balanced code trees, i.e., with equally likely outcomes, can be pruned to yield unbalanced trees with unequal probabilities.
 - The unbalanced code trees such obtained are also optimum.
 - Hence, an outcome of probability p should require about

\[\log_2 \left(\frac{1}{p} \right) \] bits

Entropy of a memoryless source

- Let a memoryless source be characterized by an ensemble U_0 with:

<table>
<thead>
<tr>
<th>Alphabet ({a_0, a_1, a_2, ..., a_{K-1}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probabilities ({P(a_0), P(a_1), P(a_2), ..., P(a_{K-1})})</td>
</tr>
</tbody>
</table>

- Shannon: information conveyed by message “\(a_k\)”:

\[I(a_k) = -\log(P(a_k)) \]

- “Entropy of the source” is the average information contents:

\[H(U_0) = E\{I(a_k)\} = -\sum_{k=0}^{K-1} P(a_k) \log(P(a_k)) = -\sum_{u_0} P(u_0) \log(P(u_0)) \]

- For “log” = “\(\log_2\)” the unit is bits/symbol
Entropy and bit-rate

- Properties of entropy:
 \[H(U_0) \geq 0 \]
 \[\max\{ H(U_0) \} = \log(K) \text{ with } P(a_j) = P(a_k) \forall j, k \]
 - The entropy \(H(U_0) \) is a lower bound for the average word length \(l_{av} \) of a decodable variable-length code for the symbols \(u_0 \).
 - Conversely, the average wordlength \(l_{av} \) can approach \(H(U_0) \), if sufficiently large blocks of symbols are encoded jointly.
- Redundancy of a code:
 \[R = l_{av} - H(U_0) \]

Encoding with variable word length

- A code without redundancy, i.e.
 \[l_{av} = H(U_0) \]
 is achieved, if all individual code word length
 \[l_{cw}(a_k) = -\log(P(a_k)) \]
 - For binary code words, all probabilities would have to be binary fractions:
 \[P(a_k) = 2^{-l_{cw}(a_k)} \]

Example

<table>
<thead>
<tr>
<th>(a_i)</th>
<th>(P(a_i))</th>
<th>redundant code</th>
<th>optimum code</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_0)</td>
<td>0.500</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>(a_1)</td>
<td>0.250</td>
<td>01</td>
<td>10</td>
</tr>
<tr>
<td>(a_2)</td>
<td>0.125</td>
<td>10</td>
<td>110</td>
</tr>
<tr>
<td>(a_3)</td>
<td>0.125</td>
<td>11</td>
<td>111</td>
</tr>
</tbody>
</table>

\(H(U_0) = 1.75 \text{ bits / symbol} \)
\(l_{av} = 1.75 \text{ bits / symbol} \)
\(R = 0 \)
Huffman-Code

- Design algorithm for variable length codes proposed by Huffman (1952) always finds a code with minimum redundancy.
- Obtain code tree as follows:

1. Pick the two symbols with lowest probabilities and merge them into a new auxiliary symbol.
2. Calculate the probability of the auxiliary symbol.
3. If more than one symbol remains, repeat steps 1 and 2 for the new auxiliary alphabet.
4. Convert the code tree into a prefix code.

Huffman-Code - Example

Fixed length coding: $l = 3.00$ bits/symbol
Huffman code: $l_{HV} = 2.71$ bits/symbol
Entropy $H(U_0) = 2.68$ bits/symbol
Redundancy of the Huffman code: $R = 0.13$ bits/symbol
Probability density function of the luminance signal Y

Images: 3 EBU test slides, 3 SMPTE test slides, uniform quantization with 256 levels (8 bits/pixel)

$H(U_Y) = 7.34$ bits / pixel

Image with lowest entropy:

$H_L(U_Y) = 6.97$ bits / pixel

Image with highest entropy:

$H_H(U_Y) = 7.35$ bits / pixel

Probability density function of the color difference signals $R-Y$ and $B-Y$

$H(U_{R-Y}) = 5.57$ bits/pixel

$H_L(U_{R-Y}) = 4.65$ bits/pixel

$H_H(U_{R-Y}) = 5.72$ bits / pixel

$H_L(U_{B-Y}) = 4.00$ bits / pixel

$H_H(U_{B-Y}) = 5.34$ bits / pixel
Joint sources

- Joint sources generate \(N \) symbols simultaneously. A coding gain can be achieved by encoding those symbols jointly.
- The lower bound for the average code word length is the joint entropy:

\[
H(U_1, U_2, \ldots, U_N) = -\sum_{u_1} \sum_{u_2} \ldots \sum_{u_N} P(u_1, u_2, \ldots, u_N) \log(P(u_1, u_2, \ldots, u_N))
\]

- It generally holds that

\[
H(U_1, U_2, \ldots, U_N) \leq H(U_1) + H(U_2) + \ldots + H(U_N)
\]

with equality, if \(U_1, U_2, \ldots, U_N \) are statistically independent.

Statistical dependencies between video signal components \(Y, R-Y, B-Y \)

- Data: 3 EBU-, 3 SMPTE test slides, each component \(Y, R-Y, B-Y \) uniformly quantized to 64 levels

\[
\begin{align*}
H_0 &= 3 \times 6 \text{ bits / sample} = 18 \text{ bits/sample} \\
H(U_Y, U_{R-Y}, U_{B-Y}) &= 9.044 \text{ bits/sample} \\
H(U_Y) + H(U_{R-Y}) + H(U_{B-Y}) &= 11.218 \text{ bits/sample} \\
\Delta H &= 2.174 \text{ bits/sample}
\end{align*}
\]

- Statistical dependency between R, G, B is much stronger.
- If joint source \(Y, R-Y, B-Y \) is treated as a source with memory, the possible gain by joint coding is much smaller.
Markov process

- Neighboring samples of the video signal are not statistically independent:

 "source with memory"

 \[P(u_T) \neq P(u_T | u_{T-1}, u_{T-2}, \ldots, u_{T-N}) \]

- A source with memory can be modeled by a Markov random process.
- Conditional probabilities of the source symbols \(u_T \) of a Markov source of order \(N \):

 \[P(u_T, Z_T) = P(u_T | u_{T-1}, u_{T-2}, \ldots, u_{T-N}) \]

 state of the Markov source at time \(T \)

Entropy of source with memory

- Markov source of order \(N \): conditional entropy

 \[H(U_T | Z_T) = H(U_T | U_{T-1}, U_{T-2}, \ldots, U_{T-N}) \]

 \[= E(-\log(p(U_T | U_{T-1}, U_{T-2}, \ldots, U_{T-N}))) \]

 \[= -\sum_{u_T} \sum_{u_{T-1}} \sum_{u_{T-2}} \ldots \sum_{u_{T-N}} p(u_T, u_{T-1}, u_{T-2}, \ldots, u_{T-N}) \log(p(u_T | u_{T-1}, u_{T-2}, \ldots, u_{T-N})) \]

 \[H(U_T | Z_T) \leq H(U_T) \] (equality for memoryless sources)

- Average code word length can approach \(H(U_T | Z_T) \) e.g. with a switched Huffman code.
- Number of states for an 8-bit video signal:

 \[
 \begin{array}{|c|c|}
 \hline
 N & \text{states} \\
 \hline
 1 & 256 \\
 2 & 65536 \\
 3 & 16777216 \\
 \hline
 \end{array}
 \]