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"Randomness is too important to be left to chance* “

Sparse MRI *R. Conveyo, Oak Ridge National Laboratory

Cons...

« Inherent slow data collection

- Limits spatial resolution
- Limits temporal resolution
- Artifact in the image

* Possible solution:
Faster imaging by reducing data

(by exploiting redundancies)
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MR Imaging

No radiation non toxic
Flexible contrast
Arbitrary imaging
plane

Many applications

Redundancy I: Phased Array

Multiple receive channels
redundant data




Parallel Imaging Redundancy ITI: Compression
Multiple receive channels Most images are compressible
reduced data - Parallel Imaging Standard approach: First collect, then compress
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Compressed Sensing Parallel Imaging + Compressed Sensing

Instead: Compressed Sensing (CS) Synergy: multiple receivers + compressibility
First Compress, then reconstruct. Faster imaging, or better images.
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Outline

* Compressed review of
- compressed sensing
- parallel imaging

* parallel imaging + CS

Implications...
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* MRI data are obtained in the frequency domain

+ Potential for significant scan time reduction

A Surprising Experiment

Randomly throw away
. 84% of samples
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Sparsity is everywhere

Angiography Spectroscopy
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Already sparsel!

Traditional Sensing
- xRN is a signal

* Make N linear projections
)4 D

sensing matrix

Sparse MRI

Compressibility

Dynamic imaging Sparse transform 20% 10% 5%
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Compressed Sens ing (Candes, Romber, Tao 2006; Donoho 2006)

- xRN is a K-sparse signal (K<«N)

* Make M (K<M<«N) incoherent linear projections
)4 D X

A "good" compressed sensing matrix is incoherent
i.e, approximately orthogonal
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Incoherency can preserve information
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CS recovery

- Giveny = ®&x
find x
+ But there's hope, x is sparse!

} Under-determined

Sparse MRI

Geometric Interpretation

domain of sparse signals

Sparse MRI

CS recovery

+ Giveny = Ox
find x
* But there's hope, x is sparsel

} Under-determined

minimize ||x|/[,

s.t.y = &x

need M = K log(N) «N

Solved by linear-programming

Sparse MRI
Practicality of CS

+ Can such sensing system exist in practice?

Fourier matrix
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Practicality of CS

+ Can such sensing system exist in practice?

Fourier matrix
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Sparse MRI

Practicality of CS

+ Can such sensing system exist in practice?

Randomly undersampled Fourier is incoherent

MRI samplfs in the Fourier domain!
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Practicality of CS

+ Can such sensing system exist in practice?

Fourier matrix
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Sparse MRI

Compressed Sensing

Ingredients:

signals. (K«N significant
coefficients)

i.e., incoherent aliasing in the transform domain
(randomly under-sampled k-space).

Recovery by solving a convex
optimization.




Intuitive example of CS
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Intuitive example of CS
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Intuitive example of CS
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Intuitive example of CS
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Intuitive example of CS
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But it's not ‘

noise!

Intuitive example of CS
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Intuitive example of CS
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Example inspired by Donoho et. Al, 2007




Sparse Reconstruction

Data
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MRI - a natural CS hardware

RF coil receives
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compressed sensing MRI

Final
Result

Incoherent
k-space sampling

Exploits
sparsity

Sparse Reconstruction

. Solve: min.

s.t.

MRI - a natural CS hardware
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Incoherent Sampling

"Randomness is too important to be
left to chance"*

* Metric of incoherency
- Point Spread Function (PSF)
- Transform Point Spread Function (TPSF)

* Practical incoherent sampling schemes.

*Robert R. Coveyou, Oak Ridge National
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The wavelet transform

Wavelets are band pass filters

Wavelet coefficients have both spatial and spectral
information
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Sparse MRI

Point Spread Function (PSF)

. undersampling
Natural measure of incoherence

Good analytic lower-bound estimate
Criteria: peak side-lobe

sampling
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Sparse MRI

Transform Point Spread Function (TPSF)

Transform incoherency?
Transform Spread Function (TPSF)
- Similar analytic indicator
- Look at peak side-lobe

Wavelet Image
domain domain

dwps wopupy
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Variable density sampling v Simulation

k-space is not uniform ' ! ——— 3 intensities

Coarse-scale - not sparse 8 & 3 feature sizes
Coherent low-res aliasing & f . Size: 100x100
| “ 5.75% pixels
4.25% finite-differences

Correct with variable
density

Targeft: recon. artifacts with

- Equalizes aliasing
random under-sampling.

- Improve incoherence

- Faster convergence p—1
o —

D

Sparse MRI ) Sparse MRI

Simulation Practical Incoherent Sampling Schemes

k-space : \ + "Pure random” sampling is impractical in MRI.

£ BT 3
cs Ccs

(gniform random) (var-dens random)
o * Instead, design "effectively random” sampling.
- Incoherent PSF/TPSF.
- Efficient for hardware and application
- Robust

* Tailor trajectory for application (Cartesian,
spiral...)

+ Randomly perturb to be "effectively random".

Sparse MRI \_] compressed sensing MRI 3




Cartesian incoherent sampling

Cartesian sampling:

Multi-slice

Sparse MRI

Multi-slice vs Single-slice

compressed sensing MRI

Single-slice 2DFT

i v
N

compressed sensing MRI

Multi-slice vs Single-slice

Multi-slice
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compressed sensing MRI




Multi-slice FSE brain

- Head scans are the most
common MRI exams.

- Most brain scans are multi-
slice.

* Use 80/192 phase-encodes
x2.4

compressed sensing MRI

Multi-slice vs 3D

compressed sensing MRI

Multi-slice Brain Imaging

Full data low-res zero-fill w/dc

- Scan reduction: x2.4

+ Transform: wavelet

Sparse MRI

3DFT Angiography

Accel Low res Zero-filling w/dc
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Sparse MRI




3D Angiography - 15" Pass Flow independent angiography
57 il Cukur et al, ISMRM'08
.. X ero-Ttiln
x1 original x5 Low res . J x1, 1.4x1.4mm? x4, 0.7x0.7 mm?

* Hi-res 1 sparsity

- T,Prep pulses 1
sparsity

x4,  22-preps

Transform: finite-
differences (TV)
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Data courtesy of Marcus Alley

Sparse MRI S Sparse MRI

3DFT Brain Non-cartesian sampling

original zf w/dc  CS wavelet
Scan time reduction: 2.4 B (S ! * More degrees of
Transform: wavelet ] EN S ; freedom.
- Not as incoherent as

random 2D sampling
- But very closel

Sparse MRI <. Sparse MRI




Non CGFTQSIGH CS Santos, et. al, MRM 55:371-379 (2006)

gridding s

Lustig, et. al, ISMRM '05

griddi
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Sparse MRI

Dynamic Incoherent Sampling

+ Random line ordering randomly samples k-t space.
+ PSF is incoherent
Sampling PSF

Sparse MRI

k-t SPARSE: Dynamic Imaging

+ Smoothd& periodic signals have a sparse representation.

frequency

Sparse MRI

RT-dynamic cardiac
. Spar‘se in Tempor‘al Sliding window k-t SPARSE True object

frequency

+ Aim for better
temporal resolution

Sliding window k-t SPARSE
iy
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Spectroscopic Imaging
Different metabolites,
different spectrum

Want spatial localization
of metabolic activity

4D signal
Very sparse
Often low-SNR

Sparse MRI

Hyperpolarized 13C spectroscopy

Combination of
Abundant SNR
Extreme sparsity
4D signal
Strict encoding time

Novel blipped EPSI
Random 3D sampling

Sparse MRI

spectra

Hu et al, TMR 2008

Hyperpolarization

Hyper‘pOIGI‘IZGTIOH = =9 ! Solid material doped with
unpaired electrons
10,000 boost in signal - ¢

Returns to equilibrium in
~1.5min

Image metabolizm: -y <o =
. 2 i P,= 94% and P.= 0.086%
Pyr‘UVGTe A Alanln e Microwaves transfer

the polarization

Pyr‘UVGTe = LGCTGTZ 3.35T, ~1.2K from electrons to nuclei

indicates cancer

Elevated lactate I\[)

i

Imaging window

Sparse MRI

Compressed Sensing:
1. Sparsity/compressibility
2. Incoherent Sampling (random k-space)
3. Non-Linear reconstruction.




Parallel Imaging

Parallel Imaging as Interpolation
* Generalized sampling theory

« k-space vs. coil sampling domain

* Involves noise amplification

Parallel Imaging Methods

Sensitivity Encoding
(SENSE)

Inverse problem

Explicit sensitivity maps
Optimal noise performance
Reconstructs 1 image

Less robust in practice

Pruessmann 2
et.al, 1999 | &
%

Noise Amplification - g factor

- Sensitivities
not orthogonal

* Noise is
amplified

+ Worse when
acceleration
close to #coils

Autocalibrating
(GRAPPA)

- Interpolation formulation

- Implicit sensitivity info.

- Not optimal

- Reconstructs individual coil
images

- Robust in practice




GRAPPA/ARC GRAPPA/ARC
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GRAPPA/ARC
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Parallel Imaging
1. Multiple Channels
2. Acceleration limited by noise amplification
3. Rule of thumb: acceleration = 1/2 #coils

A




Joint sparsity of multiple coil images

New incoherent sampling

New reconstruction
* Poisson-disk sampling is uniform and random

+ Random sampling has too many “holes”

+ Coil information is local in k-space
+ Uniform sampling is not random

Incoherent Sampling
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+ Coil information is local in k-space
+ Uniform sampling is not incoherent
* Random sampling has too many “holes”

Sampling with parallel imaging




Poisson-disk Sampling Poison Vs random Vs uniform

Incoherent ,~ - 100 scans
' j + GRAPPA/ARC
recon.

Fractional accelration
Unisotropic acceleration

Can reconstruct with
traditional GRAPPA

x2.2x4.3

Poisson-disk Sampling Reconstruction

\ . + SPIR-iT:

iTerative Self-consistent Parallel Imaging Reconstruction

ARC/GRAPPA SPIR-iT




SPIR-iT SPIR-iT: Iteration I

- Autocalibrating

Only 1 calibration kernel

Iterative

Optimal data consistency
Arbitrary trajectories
Natural fit with CS

SPIR-iT: Iteration IT SPIR-iT: Iteration ITT

chesssessss

25




SPIR-iT equation

Calibration consistency

Gx = x

- statistics from a 100

Acquisition consistency scans

+ x3 1D acceleration

XClcq - y - 4 coils

ARC
\

SPIR-iT with CS SPIR-iT with L1 Wavelet

* 6yo

+ x4 acceleration

minimize ||Gx-x||2 + || WF'x|][, + roise reduction

ST Xch = y

SPIR-IT




SPIR-iT with Wavelet CS

* 4 yo, free breathing, 11 Sec
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SPIR-iT with Wavelet CS

+ x5 acceleration
- 8 coils
-+ denoised

- Subtle features 3,
F o

preserved o

SPIR-iT with Wavelet CS

+ x2x2 poisson disc

SPIR-iT

Summary

* Both compressed sensing and
parallel imaging offer high
accelerations.

- Both have limitation.

» But, when joined.... synergy!




Collaborators Resources

Stanford UCSF: + SparseMRI V0.2: matlab code, examples
* John Pauly (EE-MRSRL) + Simon Hu (UCSF) http://www.stanford.edu/~mlustig/SparseMRI. html
+ David Donoho (Statistics) + Daniel Vigniron (UCSF)
» Juan Santos (EE-MRSRL) GE + Rice University CS page: papers, tutorials, codes, ...
+ Tolga Cukur (EE-MRSRL) + Phil Beatty (ASL west) http://www.dsp.ece.rice.edu/cs/
* Seung-Jean Kim (EE-ISL) *+ Anja Brau (ASL west)

* Marc Alley (Radiology) - Kevin King (ASL) + IEEE Signal Processing Magazine, special issue on compressive

- Shreyas Vasanawala (LPCH/ sampling 2008;25(2)
Radiology)

Blog:
http://nuit-blanche.blogspot.com/
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